DOI QR코드

DOI QR Code

Adsorption Characteristics of Cr6+ and As3+ Using Seaweed Biochar

해초 Biochar를 이용한 Cr6+과 As3+ 흡착 특성

  • Kim, Bo-Ra (Institute of Marine Science and Technology Research, Hankyong National University) ;
  • Shin, Woo-Seok (Institute of Marine Science and Technology Research, Hankyong National University) ;
  • Kim, Young-Kee (Institute of Marine Science and Technology Research, Hankyong National University)
  • 김보라 (국립한경대학교 해양과학기술연구센터) ;
  • 신우석 (국립한경대학교 해양과학기술연구센터) ;
  • 김영기 (국립한경대학교 해양과학기술연구센터)
  • Received : 2015.05.08
  • Accepted : 2015.07.08
  • Published : 2015.08.10

Abstract

This study examined the adsorption characteristics of $Cr^{6+}$ and $As^{3+}$ in the aqueous solution by Hizikia susiformis biochar which was collected from Jeju Island. The optimal pH for $Cr^{6+}$ and $As^{3+}$ adsorption were 2 and pH 6, respectively. Kinetic data showed that the adsorption occurred during the first 100 min, and the most of heavy metals were bound to biochars within 300 min. Moreover, the kinetic data presented that the course of adsorption follows the Pseudo first and second order models. The equilibrium data were well fitted by the Langmuir model and the $Cr^{6+}$ adsorption capacity (25.91 mg/g) was higher than that of $As^{3+}$ (16.54 mg/g). From these results, the seaweed biochar was shown to be a efficient adsorbent for $Cr^{6+}$ and $As^{3+}$ metals in a contaminated environment.

본 연구에서는 제주도에서 채집한 Hizikia fusiformis biochar를 이용하여 수용액 상에서 $Cr^{6+}$$As^{3+}$ 중금속의 흡착 특성을 평가하였다. $Cr^{6+}$$As^{3+}$ 흡착에 있어서 최적 pH는 각각 pH 2와 pH 6이었다. 동역학적 실험 결과, 대부분의 중금속이 처음 100 min 동안 흡착이 되었으며, 300 min 이후 평형에 도달하였다. 또한, 해초 biochar의 $Cr^{6+}$$As^{3+}$ 중금속 흡착은 유사 1차 모델과 2차 모델에서 모두 잘 부합하고 있는 것으로 나타났다. 평형 흡착 실험 결과는 Langmuir 모델에 잘 부합했고, $Cr^{6+}$ (25.91 mg/g)이 $As^{3+}$ (16.54 mg/g)보다 흡착량이 높았다. 본 연구 결과를 통해, 오염된 환경에서 해초 biochar는 $Cr^{6+}$$As^{3+}$ 중금속의 효과적인 흡착제임을 보였다.

Keywords

References

  1. R. Gundogan, B. Acemioglu, and M. H. Alma, Copper (II) adsorption from aqueous solution by herbaceous peat, J. Colloid Interface Sci., 269, 303-309 (2004). https://doi.org/10.1016/S0021-9797(03)00762-8
  2. T. G. Chuah, A. Jumasiah, I. Azni, S. Katayon, and S. Y. T. Choong, Rice husk as a potentially low-cost biosorbent for heavy metal and dye removal: an overview, Desalination, 175, 305-316 (2005). https://doi.org/10.1016/j.desal.2004.10.014
  3. Y. Zeng, H. S. Woo, G. H. Lee, and J. B. Park, Removal of chromate from water using surfactant modified Pohang clinoptilolite and Haruna chabazite, Desalin., 257, 102-109 (2010). https://doi.org/10.1016/j.desal.2010.02.039
  4. D. Mohan and C. U. Pittman Jr., Arsenic removal from water/ wastewater using adsorbents: a critical review, J. Hazard. Mater., 142, 1-53 (2007). https://doi.org/10.1016/j.jhazmat.2007.01.006
  5. J. K. Yoon, G. Amy, J. W. Chung, J. S. Sohn, and Y. M. Yoon, Removal of toxic ions (chromate, arsenate, and perchlorate) using reverse osmosis, nanofiltration, and ultrafiltration membranes, Chemosphere, 77, 228-235 (2009). https://doi.org/10.1016/j.chemosphere.2009.07.028
  6. N. Kongsricharoern and C. Polprasert, Chromium removal by a bipolar electrochemical precipitation, Water Sci. Technol., 34, 109-116 (1996).
  7. C. Raji and T. S. Anirudhan, Batch Cr(VI) removal by polyacrylamide-grafted sawdust: kinetics and thermodynamics, Water Res., 32, 3772-3780 (1998). https://doi.org/10.1016/S0043-1354(98)00150-X
  8. C. Mbareck, Q. T. Nquyen, O. T. Alaoui, and D. Barillier, Elaboration, characterization and application of polysulfone and polyacrylic acid blends as ultrafiltration membranes for removal of some heavy metals from water, J. Hazard. Mater., 171, 93-101 (2009). https://doi.org/10.1016/j.jhazmat.2009.05.123
  9. S. Malamis, E. Katsou, K. Takopoulos, P. Demetriou, and M. Loizidou, Assessment of metal removal, biomass activity and RO concentrate treatment in an MBR-RO system, J. Hazard. Mater., 209-210, 1-8 (2012). https://doi.org/10.1016/j.jhazmat.2011.10.085
  10. A. Fathima, J. R Rao, and B. U. Nair, Cr(III) removal from tannery effluent using kaolin-supported bacterial biofilm of Bacillus sp. isolated from chromium polluted soil, J. Chem. Technol. Biotechnol., 87(2), 271-279 (2012). https://doi.org/10.1002/jctb.2710
  11. E. K. Yetimoglu, M. V. Kahraman, G. Bayramoglu, O. Ercan, and N. K. Apohan, Sulfathiazole-based novel UV-cured hydrogel sorbents for mercury removal from aqueous solutions, Radiat. Phys. Chem., 78, 92-97 (2009). https://doi.org/10.1016/j.radphyschem.2008.08.011
  12. B. Wang, C. Li, and H. Liang, Bioleaching of heavy metal from woody biochar using Acidithiobacillus ferrooxidans and activation for adsorption, Bioresour. Technol., 146, 803-806 (2013). https://doi.org/10.1016/j.biortech.2013.08.020
  13. M. Imamoglu and O. Tekir, Removal of copper(II) and lead(II) ions from aqueous solutions by adsorption on activated carbon from a new precursor hazelnut husks, Desalin., 228, 108-113 (2008). https://doi.org/10.1016/j.desal.2007.08.011
  14. M. Karnib, A. Kabbani, H. Holail, and Z. Olama, Heavy Metals Removal Using Activated Carbon, Silica and Silica Activated Carbon Composite, Energy Procedia, 50, 113-120 (2014). https://doi.org/10.1016/j.egypro.2014.06.014
  15. M. Ahmad, A. U. Rajapaksha, J. E. Lim, M. Zhang, N. Bolan, D. Mohan, M. Vithanage, S. S. Lee, and Y. S. Ok, Biochar as a sorbent for contaminant management in soil and water: A review, Chemosphere, 99, 19-33 (2014). https://doi.org/10.1016/j.chemosphere.2013.10.071
  16. D. Mohan, A. Sarswat, Y. S. Ok, and C. U. Pittman Jr., Organic and inorganic contaminants removal from water with biochar, a renewable, low cost and sustainable adsorbent - A critical review, Bioresour. Technol., 160, 191-202 (2014). https://doi.org/10.1016/j.biortech.2014.01.120
  17. X. Cao, L. Ma, B. Gao, and W. Harris, Dairy-manure derived biochar effectively sorbs lead and atrazine, Environ. Sci. Technol., 43, 3285-3291 (2009). https://doi.org/10.1021/es803092k
  18. M. Uchimiya, I. M. Lima, K. T. Klasson, S. Chang, L. H. Wartelle, and J. E. Rodgers, Immobilization of heavy metal ions (Cu-II, Cd-II, Ni-II, and Pb-II) by broiler litter-derived biochars in water and soil, J. Agric. Food Chem., 58, 5538-5544 (2010). https://doi.org/10.1021/jf9044217
  19. O. R. Harvey, B. E. Herbert, R. D. Rhue, and L.-J. Kuo, Metal Interactions at the biochar-water interface: energetics and structure-sorption relationships elucidated by flow adsorption microcalorimetry, Environ. Sci. Technol., 45, 5550-5556 (2011). https://doi.org/10.1021/es104401h
  20. J. Pan, J. Jiang, and R. Xu, Adsorption of Cr(III) from acidic solutions by crop straw derived biochars, J. Environ. Sci., 25(10), 1957-1965 (2013). https://doi.org/10.1016/S1001-0742(12)60305-2
  21. B. H. Um, S. W. Jo, and S. J. Park, Pb(II) Removal from Aqueous Solutions Using Pinewood and Oakwood, J. Korean Wood Sci. Technol., 42(4), 450-459 (2014). https://doi.org/10.5658/WOOD.2014.42.4.450
  22. M. Li, Q. Liu, L. Guo, Y. Zhang, Z. Lou, Y. Wang, and G. Qian, Cu(II) removal from aqueous solution by Spartina alterniflora derived biochar, Bioresour. Technol., 141, 83-88 (2013). https://doi.org/10.1016/j.biortech.2012.12.096
  23. K. A. Jung, S. H. Woo, S. R. Lim, and J. M. Park, Mineral resources from seaweed biochar derived from a fixed-bed pyrolysis system, Contaminated Land, Ecological Assessment and Remediation, 68 (2014).
  24. I. W. Choi, D. C. Seo, S. W. Kang, S. G. Lee, Y. J. Seo, B. J. Lim, J. S. Heo, and J. S. Cho, Adsorption characteristics of heavy metals using sesame waste biochar, Korean J. Soil Sci. Fert., 46(1), 8-15 (2013). https://doi.org/10.7745/KJSSF.2013.46.1.008
  25. X. Chen, G. Chen, L. Chen, Y. Chen, J. Lehmann, M. B. McBride, and A. G. Hay, Adsorption of copper and zins by biochars produced from pyrolysis of hardwood and corn straw in aqueous solution, Bioresour. Technol., 102, 8877-8884 (2011). https://doi.org/10.1016/j.biortech.2011.06.078
  26. Z. Liu and F. S. Zhang, Removal of lead from water using biochars prepared from hydrothermal liquefaction of biomass, J. Hazard. Mater., 167, 933-939 (2009). https://doi.org/10.1016/j.jhazmat.2009.01.085
  27. Y. S. Ho and G. McKay, Thesorption of lead(II) ions on peat, Water Res., 33, 578-584 (1999a). https://doi.org/10.1016/S0043-1354(98)00207-3
  28. Y. S. Ho and G. McKay, Pseudo-second order model for sorption processes, Proc. Biochem., 34, 451-465 (1999b). https://doi.org/10.1016/S0032-9592(98)00112-5
  29. C. Lacher and R. Smith, Sorption of Hg(II) by potamogeton natans dead biomass, Miner. Eng., 15, 187-191 (2002). https://doi.org/10.1016/S0892-6875(01)00212-6
  30. P. Sheng, Y. Ting, J. Chen, and L. Hong, Sorption of lead, copper, cadmium, zinc, and nickel by marine algal biomass: characterization of biosorptive capacity and investigation of mechanisms, J. Colloid Interface Sci., 275, 131-141 (2004). https://doi.org/10.1016/j.jcis.2004.01.036
  31. Y. S. Ho, Effect of pH on lead removal from water using tree fern as the sorbent, Bioresour. Technol., 96, 1292-1296 (2005). https://doi.org/10.1016/j.biortech.2004.10.011
  32. V. Murphy, H. Hughes, and P. McLoughlin, Coparative study of chromium biosorption by red, green, and brown seaweed biomass, Chemosphere, 70, 1128-1134 (2008). https://doi.org/10.1016/j.chemosphere.2007.08.015
  33. D. Ranjan, M. Talat, and S. H. Hasan, Rice polish: an alternative to conventional adsorbents for treating arsenic bearing water by up-flow column method, Ind. Eng. Chem. Res., 48, 10180-10185 (2009). https://doi.org/10.1021/ie900877p
  34. H. S. Altundogan, S. Altundogan, F. Tumen, and M. Bildik, Arsenic removal from aqueous solutions by adsorption on red mud, Waste Manag., 20, 761-767 (2000). https://doi.org/10.1016/S0956-053X(00)00031-3
  35. K. S. Hui, C. Y. H. Chao, and S. C. Kot, removal of mixed heavy metal ions in wastewater by zeolite 4A and residual products from recycled coal fly ash, J. Hazard. Mater., B127, 89-101 (2005).
  36. C. K. Na, M. Y. Han, and H. J. Park, Applicability of theoretical adsorption models for studies on adsorption properties of adsorbent(I), J. Kor. Soc. Environ. Eng., 33, 606-616 (2011). https://doi.org/10.4491/KSEE.2011.33.8.606
  37. S. K. Kam and M. G. Lee, Characteristics of chromium biosorption by marine brown algae as biosorbents, J. Korea Technol. Soc. Wat. Wastewater Treat, 6(1), 11-23 (1998).
  38. S. Basha and Z. V. P. Murthy, Kinetic and equilibrium models for biosorption of Cr(Ⅵ) on chemically modified seaweed, Cystoseira indica, Process Biochem., 42, 1521-1529 (2007). https://doi.org/10.1016/j.procbio.2007.08.004
  39. V. Murphy, H. Hughes, and P. McLoughlin, Comparative study of chromium biosorption by red, green and brown seaweed biomass, Chemosphere, 70, 1128-1134 (2008). https://doi.org/10.1016/j.chemosphere.2007.08.015
  40. S. Babel and T. A. Kurniawan, Cr(VI) removal from synthetic wastewater using coconut shell charcoal and commercial activated carbon modified with oxidizing agents and/or chitosan, Chemosphere, 54, 951-967 (2004). https://doi.org/10.1016/j.chemosphere.2003.10.001
  41. V. M. Boddu, K. Abburi, J. L. Talbott, E. D. Smith, and R. Haasch, Removal of arsenic(III) and arsenic(V) from aqueous medium using chitosan-coated biosorbent, Water Res., 42, 633-642 (2008). https://doi.org/10.1016/j.watres.2007.08.014
  42. A. Gupta, S. R. Vidyarthi, and N. Sankararamakrishnan, Concurrent removal of As(III) and As(V) using green low cost functionalized biosorbent - Saccharum officinarum bagasse, J. Environ. Chem. Eng., 3, 113-121 (2015). https://doi.org/10.1016/j.jece.2014.11.023
  43. A. N. S. Saqib, A. Waseem, A. F. Khan, Q. Mahmood, A. Khan, A. Habib, and A. R. Khan, Arsenic bioremediation by low cost materials derived from Blue Pine(Pinus wallichiana) and Walnut (Juglans regia), Ecol. Eng., 51, 88-94 (2013). https://doi.org/10.1016/j.ecoleng.2012.12.063
  44. D. Ranjan, M. Talat, and S. H. Hasan, Biosorption of arsenic from aqueous solution using agricultural residue 'rice polish', J. Hazard. Mater., 166, 1050-1059 (2009). https://doi.org/10.1016/j.jhazmat.2008.12.013
  45. A. Sari, O. D. Uluozlu, and M. Tuzen, Equilibrium, thermodynamic and kinetic investigations on biosorption of arsenic from aqueous solution by algae (Maugeotia genuflexa) biomass, Chem. Eng. J., 167, 155-161 (2011). https://doi.org/10.1016/j.cej.2010.12.014

Cited by

  1. 저질개선제에 의한 수용액상의 As(III)와 Cr(VI) 흡착 특성 vol.32, pp.2, 2015, https://doi.org/10.15681/kswe.2016.32.2.216