DOI QR코드

DOI QR Code

Characteristics of Packed-bed Plasma Reactor with Dielectric Barrier Discharge for Treating

에틸렌 처리를 위한 충진층 유전체배리어방전 플라즈마 반응기의 특성

  • Sudhakaran, M.S.P. (Department of Chemical and Biological Engineering, Jeju National University) ;
  • Jo, Jin Oh (Department of Chemical and Biological Engineering, Jeju National University) ;
  • Trinh, Quang Hung (Department of Chemical and Biological Engineering, Jeju National University) ;
  • Mok, Young Sun (Department of Chemical and Biological Engineering, Jeju National University)
  • Received : 2015.05.29
  • Accepted : 2015.06.26
  • Published : 2015.08.10

Abstract

This work investigated the characteristics of a packed-bed plasma reactor system and the performances of the plasma reactors connected in series or in parallel for the decomposition of ethylene. Before the discharge ignition, the effective capacitance of the ${\gamma}$-alumina packed-bed plasma reactor was larger than that of the reactor without any packing, but after the ignition the effective capacitance was similar to each other, regardless of the packing. The energy of electrons created by plasma depends mainly on the electric field intensity, and was not significantly affected by the gas composition in the range of 0~20% (v/v) oxygen (nitrogen : 80~100% (v/v)). Among the various reactive species generated by plasma, ground-state atomic oxygen and ozone are understood to be primarily involved in oxidation reactions, and as the electric field intensity increases, the amount of ground-state atomic oxygen relatively decreases while that of nitrogen atom increases. Even though there are many parameters affecting the performance of the plasma reactor such as a voltage, discharge power, gas flow rate and residence time, all parameters can be integrated into a single parameter, namely, specific input energy (SIE). It was experimentally confirmed that the performances of the plasma reactors connected in series or in parallel could be treated as a function of SIE alone, which simplifies the scale-up design procedure. Besides, the ethylene decomposition results can be predicted by the calculation using the rate constant expressed as a function of SIE.

본 연구에서는 충진층 플라즈마 반응기의 특성 및 에틸렌을 분해하는데 있어서 플라즈마 반응기의 직렬 및 병렬 배열에 따른 영향에 대해 조사하였다. 플라즈마 방전 개시 전의 반응기 유효 커패시턴스는 ${\gamma}$-알루미나 펠릿이 충진된 경우가 충진되지 않은 경우보다 컸으나, 일단 플라즈마 방전이 개시되고 나면 ${\gamma}$-알루미나 충진 여부와 관계없이 유효 커패시턴스가 유사하였다. 플라즈마 상태에서 생성되는 전자의 에너지는 전기장세기에 크게 의존하며, 0~20%(v/v) 범위의 산소농도(질소 : 80~100% (v/v))에서는 기체조성에 크게 영향을 받지 않는 것으로 나타났다. 플라즈마 상태에서 생성되는 여러 활성 성분들 중 바닥상태의 산소원자 및 오존이 산화 반응에 주로 관여하며, 전기장세기가 높아질수록 산소원자가 상대적으로 감소하는 대신 질소원자의 분율이 급격히 증가한다. 플라즈마 공정에서 전압, 방전 전력, 기체 유량, 체류시간 등 반응기의 성능에 영향을 주는 여러 가지 파라미터들이 있지만, 모든 파라미터들이 비에너지밀도 하나로 통합될 수 있음을 확인하였으며, 직렬 및 병렬로 연결된 반응기의 성능도 비에너지밀도만의 함수로 간주할 수 있으므로 반응기 설계 과정이 크게 단순화될 수 있다. 비에너지밀도의 함수로 나타낸 반응속도상수를 이용하여 계산한 결과도 실험데이터를 잘 예측할 수 있었다.

Keywords

References

  1. H. L. Chen, H. M. Lee, S. H. Chen, and M. B. Chang, Review of packed-bed plasma reactor for ozone generation and air pollution control, Ind. Eng. Chem. Res., 47(7), 2122-2130 (2008). https://doi.org/10.1021/ie071411s
  2. H. H. Kim, Nonthermal plasma processing for air-pollution control: a historical review, current issues, and future prospects, Plasma Proc. Polym., 1, 91-110 (2004). https://doi.org/10.1002/ppap.200400028
  3. A. M. Vandenbroucke, R. Morent, N. De Geyter, and C. Leys, Non-thermal plasmas for non-catalytic and catalytic VOC abatement, J. Hazard. Mater., 195, 30-54 (2011). https://doi.org/10.1016/j.jhazmat.2011.08.060
  4. M. Bahri and F. Haghighat, Plasma-based indoor air cleaning technologies: The state of the art-Review, CLEAN-Soil Air Water, 42(12), 1667-1680 (2014). https://doi.org/10.1002/clen.201300296
  5. X. Zhu, X, Gao, C. Zheng, Z. Wang, M. Nia, and X. Tu, Plasma-catalytic removal of a low concentration of acetone in humid conditions, RSC Advances, 4, 37796-37805 (2014). https://doi.org/10.1039/C4RA05985A
  6. H. L. Chen, H. M. Lee, S. H. Chen, M. B. Chang, S. J. Yu, and S. N. Li, Removal of volatile organic compounds by single-stage and two-stage plasma catalysis systems: a review of the performance enhancement mechanisms, current status, and suitable applications, Environ. Sci. Technol., 43(7), 2216-2227 (2009). https://doi.org/10.1021/es802679b
  7. S. Sultana, A. M. Vandenbroucke, C. Leys, N. De Geyter, and R. Morent, Abatement of VOCs with alternate adsorption and plasma-assisted regeneration: a review, Catalysts, 5, 718-746 (2015). https://doi.org/10.3390/catal5020718
  8. D. Mei, X. Zhu, Y.-L. He, J. D. Yan, and X. Tu, Plasma-assisted conversion of $CO_2$ in a dielectric barrier discharge reactor: understanding the effect of packing materials, Plasma Sources Sci. Technol., 24, 015011 (2015). https://doi.org/10.1088/0963-0252/24/1/015011
  9. T. C. Wang, N. Lu, J. T. An, Y. Zhao, J. Li, and Y. Wu, Multi-tube parallel surface discharge reactor for wastewater treatment, Sep. Purif. Technol., 100, 9-14 (2012). https://doi.org/10.1016/j.seppur.2012.08.014
  10. A. Yamamoto, S. Mori, and M. Suzuki, Scale-up or numbering-up of a micro plasma reactor for the carbon dioxide decomposition, Thin Solid Films, 515(9), 4296-4300 (2007). https://doi.org/10.1016/j.tsf.2006.02.058
  11. H.-E. Wagner, R. Brandenburg, K. V. Kozlov, A. Sonnenfeld, P. Michel, and J. F. Behnke, The barrier discharge: basic properties and applications to surface treatment, Vacuum, 71, 417-436 (2003). https://doi.org/10.1016/S0042-207X(02)00765-0
  12. N. Sue-aok, T. Srithanratana, K. Rangsriwatananon, and S. Hengrasmee, Study of ethylene adsorption on zeolite NaY modified with group I metal ions, Appl. Surf. Sci., 256, 3997-4002 (2010). https://doi.org/10.1016/j.apsusc.2010.01.065
  13. K. G. Kostov, R. Y. Honda, L. M. S. Alves, and M. E. Kayama, Characteristics of dielectric barrier discharge reactor for material treatment, Brazilian J. Phys., 39(2), 322-325 (2009). https://doi.org/10.1590/S0103-97332009000300015
  14. U. Kogelschatz, B. Eliasson, and W. Egli, Dielectric-barrier discharges, principle and applications, J. Phys. IV France, 7, C4-47-C4-66 (1997).
  15. Q. Yu, M. Kong, T. Liu, J. Fei, and X. Zheng, Characteristics of the decomposition of $CO_2$ in a dielectric packed-bed plasma reactor, Plasma Chem. Plasma Proc., 32, 153-163 (2012). https://doi.org/10.1007/s11090-011-9335-y
  16. X. Wang, Q. Yang, C. Yao, X. Zhang, and C. Sun, Dielectric barrier discharge characteristics of multineedle-to-cylinder configuration, Energies, 4, 2133-2150 (2011). https://doi.org/10.3390/en4122133
  17. G. J. M. Hagelaar and L. C. Pitchford, Solving the Boltzmann equation to obtain electron transport coefficients and rate coefficients for fluid models, Plasma Sources Sci. Technol., 14, 722-733 (2005). https://doi.org/10.1088/0963-0252/14/4/011
  18. A. A. Kulikovsky, The efficiency of radicals production by positive streamer in air: the role of Laplacian field, IEEE Trans. Plasma Sci., 29(2), 313-317 (2001). https://doi.org/10.1109/27.922740
  19. L. A. Rosocha, G. K. Anderson, L. A. Bechtold, J. J. Coogan, H. G. Heck, M. Kang, W. H. McCulla, R. A. Tennant, and P. J. Wantuck, Treatment of hazardous organic wastes using silent dis charge plasmas. In: B. M. Penetrante and S. E. Schultheis (eds.). Non-thermal Plasma Techniques for Pollution Control: Part B, 281-308, Springer-Verlag, Berlin, Germany (1993).
  20. Y. L. M. Creyghton, Pulsed Positive Corona Discharges, Ph.D. dissertation, Eindhoven Univ. Technol., The Netherlands (1994).
  21. G.-H. Kim, S.-Y. Jeong, and H.-C. Kwon, Capacitance between an atmospheric discharge plasma and the dielectric electrode in the parallel cell reactor, J. Korean Phys. Soc., 49(3), 1307-1311 (2006).
  22. H. S. Fogler, Essentials of Chemical Reaction Engineering, Pearson Education, Inc., Boston, MA, USA (2010).
  23. H. H. Kim, A. Ogata, and S. Futamura, Complete oxidation of volatile organic compounds (VOCs) using plasma-driven catalysis and oxygen plasma, Int. J. Plasma Environ. Sci. Technol., 1, 46-51 (2007).

Cited by

  1. Combined Removal of n-heptane and CO using Plasma-catalytic Process vol.20, pp.2, 2016, https://doi.org/10.7842/kigas.2016.20.2.1
  2. Removal of Nitrogen Oxides Using Hydrocarbon Selective Catalytic Reduction Coupled with Plasma vol.27, pp.1, 2016, https://doi.org/10.14478/ace.2015.1130
  3. Decomposition of Aqueous Anatoxin-a Using Underwater Dielectric Barrier Discharge Plasma Created in a Porous Ceramic Tube vol.30, pp.2, 2016, https://doi.org/10.11001/jksww.2016.30.2.167
  4. Developing multiplexed plasma micro-reactor for ozone intensification and wastewater treatment vol.162, pp.None, 2015, https://doi.org/10.1016/j.cep.2021.108337