DOI QR코드

DOI QR Code

Anamorphic Infrared Camera with Wide Field of View and Optomechanical Automatic Athermalization Mechanism

광기구적 자동 비열화가 적용된 비정형 적외선 광각 카메라

  • Received : 2015.05.20
  • Accepted : 2015.06.26
  • Published : 2015.08.25

Abstract

A system of infrared camera optics with wide field of view and anamorphic lenses is proposed, and its validity verified through manufacture. The infrared camera produced provides a wide field of view of over 100 degrees in the horizontal direction, and an even greater magnification in the vertical direction. As a result, the system can have a wider surveillance range and improved detection ability at the same time. In addition, a new optomechanical automatic athermalization mechanism is proposed and applied to the infrared camera. Its performance and utility is proved through testing.

비정형(anamorphic) 렌즈가 적용된 적외선 광각 카메라 광학계를 제안하고 제작을 통해 그 유용성을 입증하였다. 개발된 적외선 카메라는 비정형 렌즈를 이용하여 수평방향에 대해서는 100도 이상의 넓은 시계를 제공하면서 수직방향에 대해서는 수평시계보다 큰 배율을 갖게 함으로써 증가된 해상도를 통해 장비의 광역 감시 및 탐지 능력을 동시에 향상시키는 특징을 갖는다. 또한 광기구적 자동 비열화 방법을 제안하고 시스템에 적용하여 그 성능 및 활용성을 확인하였다.

Keywords

References

  1. W. J. Smith, Modern Optical Engineering, 4th ed. (McGraw-Hill Companies, Inc., USA, 2008).
  2. R. Hartmann and W. J. Smith, "Infrared optical design and fabrication," Proc. SPIE CR38 (1991).
  3. P. J. Rogers, "Athermalized FLIR optics," Proc. SPIE 1354, 742-751 (1990).
  4. R. Simmons, "Athermalisation of a fast infrared telescope objective," Proc. SPIE 3429, 11-18 (1995).
  5. G. C. Holst, Testing and Evaluation of Infrared Imaging Systems (SPIE Optical Engineering Press, 2008), p. 211.
  6. C. L. Wyatt, Radiometric System Design (Macmillan Publishing Company, 1987), pp. 81-85.
  7. G. C. Holst, Testing and Evaluation of Infrared Imaging Systems (SPIE Optical Engineering Press, 2008), p. 142.
  8. G. Poropat, "Effect of system point spread function, apparent size, and detector instantaneous field of view on the infrared image contrast of small objects," Opt. Eng. 32, 2598-2607 (1993). https://doi.org/10.1117/12.146388
  9. V. Samson, F. Champagnat, and J. Giovannelli, "Point target detection and subpixel position estimation in optical imagery," Appl. Opt. 43, 257-263 (2004). https://doi.org/10.1364/AO.43.000257
  10. W. J. Smith, Modern Lens Design, 2nd ed. (McGraw-Hill Companies, Inc., USA, 2005).
  11. P. R. Minarik, F. R. Seiter, D. L. Bohlin, S. S. Yoo, and J. J. Kramer, Efficient Calculation of Ensquared Energy in an Imaging System, USPC Class 382103 (2008).
  12. R. D. Hudson, Infrared System Engineering (John Willy & Sons, 1969), pp. 417-437.
  13. R. G. Drigger, P. Cox, and T. Edwards, Introduction to Infrared and Electro-Optical Systems (Artech House, Inc., 1999), p. 10.
  14. R. E. Fischer, B. Tadic-Galeb, and P. R. Yoder, Optical System Design, 2nd ed. (McGraw-Hill Companies, Inc., USA, 2008).
  15. D. Heshmaty-Manesh and G. Y. Haig, "Lens tolerancing by desk-top computer," Appl. Opt. 25, 1268-1270 (1986). https://doi.org/10.1364/AO.25.001268
  16. "Code V reference manual," vol. 3, Optical Research Associates (2014).