DOI QR코드

DOI QR Code

Optimal Management of Fabrication and Assembly Tolerance of Optical Systems by Analyzing Its Influence on Zernike Coefficients

쩨르니케 계수의 민감도에 바탕을 둔 광부품 제작 및 조립 공차의 최적 관리

  • Kim, Hyunsook (Agency for Defense Development) ;
  • Kim, Jin Seung (Department of Nano Science and Technology, Graduate School, Chonbuk National University)
  • 김현숙 (국방과학연구소) ;
  • 김진승 (전북대학교 대학원 나노기술학과)
  • Received : 2015.06.24
  • Accepted : 2015.08.03
  • Published : 2015.08.25

Abstract

A new method is proposed for optimal management of the fabrication and assembly tolerance of optical systems. The practical utility of the method is shown by applying it to a wide-angle anamorphic IR optical system. In this method the wavefront error of an optical system is expressed in terms of Zernike polynomials, and the sensitivity of the expansion coefficients to the variation of design parameters is analyzed. Based on this sensitivity analysis, the optimal tolerances of the fabrication parameters are determined and the best compensators for the assembly process are selected. By using this method, one can accurately predict with good confidence the best possible performance of a completed optical system in practice.

광부품 제작 및 조립 과정을 고려하여 완성된 광학계의 성능을 최적화하는 공차분석 방법을 제안하고 이를 적외선 광각 광학계에 적용하여 그 유용성을 확인하였다. 이 방법은 광학계에서 나오는 파면 오차를 쩨르니케 다항식으로 전개하고, 전개 계수인 쩨르니케 계수가 광부품 및 조립정렬 변수에 대해 변화하는 정도를 나타내는 민감도를 분석한다. 이 민감도를 바탕으로 광부품 제작 공차를 최적값으로 정하고 최선의 조립정렬 보상자를 고른다. 이 방법은 광부품의 제작 및 조립정렬 공차를 최적값으로 잡고, 또 그러한 공차에 의한 성능저하를 예측하고, 대비하므로 실제로 완성될 광학계의 성능을 최상으로 높일 수 있고, 또 정확하게 예측할 수 있다.

Keywords

References

  1. R. N. Youngworth, "Twenty-first century optical tolerancing: A look at the past and improvements for the future," in Proc. IODC (Vancouver, Canada, June 4 2006), Paper# MB3.
  2. H. H. Hopkins, "A theoretical and experimental study of lens centering errors and their influence on optical image quality," Brit. J. Appl. Phys. 17, 33-54 (1966). https://doi.org/10.1088/0508-3443/17/1/303
  3. M. Rimmer, "Analysis of perturbed lens systems," Appl. Opt. 9, 533-537 (1970). https://doi.org/10.1364/AO.9.000533
  4. C. Olson and R. N. Youngworth, "Alignment analysis of optical systems using derivative information," Proc. SPIE 7068, 70680A-1-70680A-10 (2008).
  5. P. Jain, "Optical tolerancing and principal component analysis," Appl. Opt. 54, 1439-1442 (2015). https://doi.org/10.1364/AO.54.001439
  6. E. Hermann and J. Sasian, "Aberration considerations in lens tolerancing," Appl. Opt. 53, 341-346 (2015).
  7. M. Born and E. Wolf, Principles of Optics, 7th ed. (Cambridge University Press, Cambridge, UK, 1999), Chapter 9.
  8. D. Heshmaty-Manesh and G. Y. Haig, "Lens tolerancing by desk-top computer," Appl. Opt. 25, 1268-1270 (1986). https://doi.org/10.1364/AO.25.001268
  9. D. E. Oinen and N. W. Billow, "A new approach to the simulation of optical manufacturing processes," Proc. SPIE 1354, 487-493 (1990).
  10. D. Forse, "Statistical tolerancing for optics," Proc. SPIE 2775, 18-27 (1996).
  11. E. D. Kim, Y.-W. Choi, M.-S. Kang, E.-E. Kim, and H.-S. Yang, "Optical alignment of a high-resolution optical earth observation camera for small satellites," Korean J. Opt. Photon. (Hankook Kwanghak Hoeji) 15, 391-396 (2004). https://doi.org/10.3807/KJOP.2004.15.4.391
  12. R. J. Noll, "Zernike polynomials and atmospheric turbulence," J. Opt Soc. Am. 66, 207-211 (1976). https://doi.org/10.1364/JOSA.66.000207
  13. V. N. Mahajan, "Zernike circle polynomials and optical aberrations of systems with circular pupils," Suppl. Appl. Opt. 33, 8121-8124 (1994). https://doi.org/10.1364/AO.33.008121
  14. Y. Kim, H.-S. Yang, J.-B. Song, S.-W. Kim, and Y.-W. Lee, "Modeling alignment experiment errors for improved computer-aided alignment," J. Opt. Soc. Korea 17, 525-532 (2013). https://doi.org/10.3807/JOSK.2013.17.6.525
  15. "Code V reference manual," Optical Research Associates (2014), vol. 3.
  16. R. E. Fischer, B. Tadic-Galeb, and P. R. Yoder, Optical System Design, 2nd ed. (McGraw-Hill, New York, USA, 2008), Chapter 16.
  17. W. J. Smith, Modern Optical Engineering, 4th ed. (McGraw-Hill, New York, USA, 2008), Chapter 20.
  18. E. Herman, R. N. Youngworth, and J. Sasian, "Efficient assessment of lens manufacturability in optical design," in Proc. IODC (Kohala Coast, Hawaii, United States, June 2014), Paper# IM4A.4.