DOI QR코드

DOI QR Code

Dexmedetomidine Modulates Histamine-induced Ca2+ Signaling and Pro-inflammatory Cytokine Expression

  • Yang, Dongki (Department of Physiology, College of Medicine, Gachon University) ;
  • Hong, Jeong Hee (Department of Physiology, College of Medicine, Gachon University)
  • Received : 2015.02.06
  • Accepted : 2015.05.10
  • Published : 2015.09.01

Abstract

Dexmedetomidine is a sedative and analgesic agent that exerts its effects by selectively agonizing ${\alpha}2$ adrenoceptor. Histamine is a pathophysiological amine that activates G protein-coupled receptors, to induce $Ca^{2+}$ release and subsequent mediate or progress inflammation. Dexmedetomidine has been reported to exert inhibitory effect on inflammation both in vitro and in vivo studies. However, it is unclear that dexmedetomidine modulates histamine-induced signaling and pro-inflammatory cytokine expression. This study was carried out to assess how dexmedetomidine modulates histamine-induced $Ca^{2+}$ signaling and regulates the expression of pro-inflammatory cytokine genes encoding interleukin (IL)-6 and -8. To elucidate the regulatory role of dexmedetomidine on histamine signaling, HeLa cells and human salivary gland cells which are endogenously expressed histamine 1 receptor were used. Dexmedetomidine itself did not trigger $Ca^{2+}$ peak or increase in the presence or absence of external $Ca^{2+}$. When cells were stimulated with histamine after pretreatment with various concentrations of dexmedetomidine, we observed inhibited histamine-induced $[Ca^{2+}]_i$ signal in both cell types. Histamine stimulated IL-6 mRNA expression not IL-8 mRNA within 2 hrs, however this effect was attenuated by dexmedetomidine. Collectively, these findings suggest that dexmedetomidine modulates histamine-induced $Ca^{2+}$ signaling and IL-6 expression and will be useful for understanding the antagonistic properties of dexmedetomidine on histamine-induced signaling beyond its sedative effect.

Keywords

References

  1. Kamibayashi T, Maze M. Clinical uses of alpha2 -adrenergic agonists. Anesthesiology. 2000;93:1345-1349. https://doi.org/10.1097/00000542-200011000-00030
  2. Jackson KC 3rd, Wohlt P, Fine PG. Dexmedetomidine: a novel analgesic with palliative medicine potential. J Pain Palliat Care Pharmacother. 2006;20:23-27.
  3. Kocoglu H, Karaaslan K, Gonca E, Bozdogan O, Gulcu N. Preconditionin effects of dexmedetomidine on myocardial ischemia/reperfusion injury in rats. Curr Ther Res Clin Exp. 2008;69:150-158. https://doi.org/10.1016/j.curtheres.2008.04.003
  4. Hoffman WE, Kochs E, Werner C, Thomas C, Albrecht RF. Dexmedetomidine improves neurologic outcome from incomplete ischemia in the rat. Reversal by the alpha 2-adrenergic antagonist atipamezole. Anesthesiology. 1991;75:328-332. https://doi.org/10.1097/00000542-199108000-00022
  5. Okada H, Kurita T, Mochizuki T, Morita K, Sato S. The cardioprotective effect of dexmedetomidine on global ischaemia in isolated rat hearts. Resuscitation. 2007;74:538-545. https://doi.org/10.1016/j.resuscitation.2007.01.032
  6. Si YN, Bao HG, Xu L, Wang XL, Shen Y, Wang JS, Yang XB. Dexmedetomidine protects against ischemia/reperfusion injury in rat kidney. Eur Rev Med Pharmacol Sci. 2014;18:1843-1851.
  7. Plambech MZ, Afshari A. Dexmedetomidine in the pediatric population: a review. Minerva Anestesiol. 2015;81:320-332.
  8. Zhang X, Wang J, Qian W, Zhao J, Sun L, Qian Y, Xiao H. Dexmedetomidine inhibits inducible nitric oxide synthase in lipopolysaccharide-stimulated microglia by suppression of extracellular signal-regulated kinase. Neurol Res. 2015;37:238-245. https://doi.org/10.1179/1743132814Y.0000000426
  9. Tanabe K, Matsushima-Nishiwaki R, Kozawa O, Iida H. Dexmedetomidine suppresses interleukin-$1{\beta}$-induced interleukin-6 synthesis in rat glial cells. Int J Mol Med. 2014;34:1032-1038. https://doi.org/10.3892/ijmm.2014.1863
  10. Liao Z, Cao D, Han X, Liu C, Peng J, Zuo Z, Wang F, Li Y. Both JNK and P38 MAPK pathways participate in the protection by dexmedetomidine against isoflurane-induced neuroapoptosis in the hippocampus of neonatal rats. Brain Res Bull. 2014;107:69-78. https://doi.org/10.1016/j.brainresbull.2014.07.001
  11. Zhang X, Wang J, Qian W, Zhao J, Sun L, Qian Y, Xiao H. Dexmedetomidine inhibits tumor necrosis factor-alpha and interleukin 6 in lipopolysaccharide-stimulated astrocytes by suppression of c-Jun N-terminal kinases. Inflammation. 2014;37:942-949. https://doi.org/10.1007/s10753-014-9814-4
  12. Peng M, Wang YL, Wang CY, Chen C. Dexmedetomidine attenuates lipopolysaccharide-induced proinflammatory response in primary microglia. J Surg Res. 2013;179:e219-225. https://doi.org/10.1016/j.jss.2012.05.047
  13. Zhao Z, Code WE, Hertz L. Dexmedetomidine, a potent and highly specific alpha 2 agonist, evokes cytosolic calcium surge in astrocytes but not in neurons. Neuropharmacology. 1992;31:1077-1079. https://doi.org/10.1016/0028-3908(92)90111-2
  14. Berridge MJ, Lipp P, Bootman MD. The versatility and universality of calcium signalling. Nat Rev Mol Cell Biol. 2000;1:11-21.
  15. Berridge MJ, Bootman MD, Roderick HL. Calcium signalling: dynamics, homeostasis and remodelling. Nat Rev Mol Cell Biol. 2003;4:517-529.
  16. Lim SA, Hwang KY, Chung SH. Niflumic acid reduces histamine-induced interleukin-6 and -8 expression in human conjunctival epithelial cells. Ophthalmic Res. 2013;50:192-196. https://doi.org/10.1159/000354177
  17. Dunford PJ, O'Donnell N, Riley JP, Williams KN, Karlsson L, Thurmond RL. The histamine H4 receptor mediates allergic airway inflammation by regulating the activation of CD4+ T cells. J Immunol. 2006;176:7062-7070. https://doi.org/10.4049/jimmunol.176.11.7062
  18. Coruzzi G, Adami M, Guaita E, de Esch IJ, Leurs R. Antiinflammatory and antinociceptive effects of the selective histamine H4-receptor antagonists JNJ7777120 and VUF6002 in a rat model of carrageenan-induced acute inflammation. Eur J Pharmacol. 2007;563:240-244. https://doi.org/10.1016/j.ejphar.2007.02.026
  19. Mizuguchi H, Ono S, Hattori M, Sasaki Y, Fukui H. Usefulness of HeLa cells to evaluate inverse agonistic activity of antihistamines. Int Immunopharmacol. 2013;15:539-543. https://doi.org/10.1016/j.intimp.2013.02.009
  20. Ok SH, Bae SI, Shim HS, Sohn JT. Dexmedetomidine-induced contraction of isolated rat aorta is dependent on extracellular calcium concentration. Korean J Anesthesiol. 2012;63:253-259. https://doi.org/10.4097/kjae.2012.63.3.253
  21. Dewitt S, Laffafian I, Morris MR, Hallett MB. Cytosolic $Ca^{2+}$ measurement and imaging in inflammatory cells. Methods Mol Biol. 2003;225:47-59.
  22. Hong JH, Lee SI, Kim KE, Yong TS, Seo JT, Sohn MH, Shin DM. German cockroach extract activates protease-activated receptor 2 in human airway epithelial cells. J Allergy Clin Immunol. 2004;113:315-319. https://doi.org/10.1016/j.jaci.2003.11.026
  23. Newton K, Dixit VM. Signaling in innate immunity and inflammation. Cold Spring Harb Perspect Biol. 2012;4. pii:a006049.
  24. Hoffmann A, Kann O, Ohlemeyer C, Hanisch UK, Kettenmann H. Elevation of basal intracellular calcium as a central element in the activation of brain macrophages (microglia): suppression of receptor-evoked calcium signaling and control of release function. J Neurosci. 2003;23:4410-4419. https://doi.org/10.1523/JNEUROSCI.23-11-04410.2003
  25. Kim JH, Park SH, Moon YW, Hwang S, Kim D, Jo SH, Oh SB, Kim JS, Jahng JW, Lee JH, Lee SJ, Choi SY, Park K. Histamine H1 receptor induces cytosolic calcium increase and aquaporin translocation in human salivary gland cells. J Pharmacol Exp Ther. 2009;330:403-412. https://doi.org/10.1124/jpet.109.153023
  26. Zhou MH, Zheng H, Si H, Jin Y, Peng JM, He L, Zhou Y, Munoz-Garay C, Zawieja DC, Kuo L, Peng X, Zhang SL. Stromal interaction molecule 1 (STIM1) and Orai1 mediate histamine-evoked calcium entry and nuclear factor of activated T-cells (NFAT) signaling in human umbilical vein endothelial cells. J Biol Chem. 2014;289:29446-29456. https://doi.org/10.1074/jbc.M114.578492
  27. Repka-Ramirez MS, Baraniuk JN. Histamine in health and disease. Clin Allergy Immunol. 2002;17:1-25.
  28. Hill SJ, Ganellin CR, Timmerman H, Schwartz JC, Shankley NP, Young JM, Schunack W, Levi R, Haas HL. International Union of Pharmacology. XIII. Classification of histamine receptors. Pharmacol Rev. 1997;49:253-278.
  29. Oda T, Morikawa N, Saito Y, Masuho Y, Matsumoto S. Molecular cloning and characterization of a novel type of histamine receptor preferentially expressed in leukocytes. J Biol Chem. 2000;275:36781-36786. https://doi.org/10.1074/jbc.M006480200
  30. Firth AL, Won JY, Park WS. Regulation of $Ca^{2+}$ signaling in pulmonary hypertension. Korean J Physiol Pharmacol. 2013;17:1-8. https://doi.org/10.4196/kjpp.2013.17.1.1
  31. Das AK, Yoshimura S, Mishima R, Fujimoto K, Mizuguchi H, Dev S, Wakayama Y, Kitamura Y, Horio S, Takeda N, Fukui H. Stimulation of histamine H1 receptor up-regulates histamine H1 receptor itself through activation of receptor gene transcription. J Pharmacol Sci. 2007;103:374-382. https://doi.org/10.1254/jphs.FP0061411
  32. Mizuguchi H, Terao T, Kitai M, Ikeda M, Yoshimura Y, Das AK, Kitamura Y, Takeda N, Fukui H. Involvement of protein kinase Cdelta/extracellular signal-regulated kinase/poly(ADP-ribose) polymerase-1 (PARP-1) signaling pathway in histamine-induced up-regulation of histamine H1 receptor gene expression in HeLa cells. J Biol Chem. 2011;286:30542-30551. https://doi.org/10.1074/jbc.M111.253104
  33. Schmelz M, Schmidt R, Weidner C, Hilliges M, Torebjork HE, Handwerker HO. Chemical response pattern of different classes of C-nociceptors to pruritogens and algogens. J Neurophysiol. 2003;89:2441-2448. https://doi.org/10.1152/jn.01139.2002
  34. Shim WS, Tak MH, Lee MH, Kim M, Kim M, Koo JY, Lee CH, Kim M, Oh U. TRPV1 mediates histamine-induced itching via the activation of phospholipase A2 and 12-lipoxygenase. J Neurosci. 2007;27:2331-2337. https://doi.org/10.1523/JNEUROSCI.4643-06.2007
  35. Laidlaw A, Flecknell P, Rees JL. Production of acute and chronic itch with histamine and contact sensitizers in the mouse and guinea pig. Exp Dermatol. 2002;11:285-291. https://doi.org/10.1034/j.1600-0625.2002.110401.x
  36. Sisto M, Lisi S, Lofrumento DD, Cucci L, Mitolo V, D'Amore M. Blockade of TNF-${\alpha}$ signaling suppresses the AREG-mediated IL-6 and IL-8 cytokines secretion induced by anti-Ro/SSA autoantibodies. Lab Invest. 2010. [Epub ahead of print]
  37. Son GY, Shin DM, Hong JH. Bacterial PAMPs and Allergens Trigger Increase in $[Ca^{2+}]_i$-induced Cytokine Expression in Human PDL Fibroblasts. Korean J Physiol Pharmacol. 2015;19:291-297. https://doi.org/10.4196/kjpp.2015.19.3.291
  38. Ebert TJ, Hall JE, Barney JA, Uhrich TD, Colinco MD. The effects of increasing plasma concentrations of dexmedetomidine in humans. Anesthesiology. 2000;93:382-394. https://doi.org/10.1097/00000542-200008000-00016
  39. Sullivan GW, Linden J, Buster BL, Scheld WM. Neutrophil A2A adenosine receptor inhibits inflammation in a rat model of meningitis: synergy with the type IV phosphodiesterase inhibitor, rolipram. J Infect Dis. 1999;180:1550-1560. https://doi.org/10.1086/315084
  40. Maier-Moore JS, Horton CG, Mathews SA, Confer AW, Lawrence C, Pan Z, Coggeshall KM, Farris AD. Interleukin-6 deficiency corrects nephritis, lymphocyte abnormalities, and secondary Sjogren's syndrome features in lupus-prone Sle1.Yaa mice. Arthritis Rheumatol. 2014;66:2521-2531. https://doi.org/10.1002/art.38716
  41. Benggon M, Chen H, Applegate R, Martin R, Zhang JH. Effect of dexmedetomidine on brain edema and neurological outcomes in surgical brain injury in rats. Anesth Analg. 2012;115:154-159. https://doi.org/10.1213/ANE.0b013e31824e2b86
  42. Engelhard K, Werner C, Kaspar S, Mollenberg O, Blobner M, Bachl M, Kochs E. Effect of the alpha2-agonist dexmedetomidine on cerebral neurotransmitter concentrations during cerebral ischemia in rats. Anesthesiology. 2002;96:450-457. https://doi.org/10.1097/00000542-200202000-00034
  43. Taniguchi T, Kidani Y, Kanakura H, Takemoto Y, Yamamoto K. Effects of dexmedetomidine on mortality rate and inflammatory responses to endotoxin-induced shock in rats. Crit Care Med. 2004;32:1322-1326. https://doi.org/10.1097/01.CCM.0000128579.84228.2A
  44. Unal M, Gursoy S, Altun A, Duger C, Kol IO, Kaygusuz K, Bagcivan I, Mimaroglu C. Ineffective doses of dexmedetomidine potentiates the antinociception induced by morphine and fentanyl in acute pain model. Korean J Physiol Pharmacol. 2013;17:417-422. https://doi.org/10.4196/kjpp.2013.17.5.417

Cited by

  1. Oxysterol-binding protein-related protein 4L promotes cell proliferation by sustaining intracellular Ca 2+ homeostasis in cervical carcinoma cell lines vol.7, pp.40, 2016, https://doi.org/10.18632/oncotarget.11671
  2. Two Phase Modulation of [FORMULA OMISSION] Entry and Cl / [FORMULA OMISSION] Exchanger in Submandibular Glands Cells by Dexmedetomidine vol.8, pp.None, 2017, https://doi.org/10.3389/fphys.2017.00086
  3. Dexmedetomidine Alleviates LPS-Induced Neuronal Dysfunction by Modulating the AKT/GSK-3β/CRMP-2 Pathway in Hippocampal Neurons vol.17, pp.None, 2015, https://doi.org/10.2147/ndt.s297365