DOI QR코드

DOI QR Code

Distribution of Human Rotavirus Genotypes in a Tertiary Hospital, Seoul, Korea During 2009-2013

2009년부터 2013년까지 서울의 일개 대학병원에서 동정된 로타바이러스 유전형의 분포

  • Han, Tae Hee (Department of Diagnostic Laboratory Medicine, Sanggyepaik Hospital, Inje University College of Medicine) ;
  • Park, Sang-Hun (Seoul Health Environmental Center, Virus Team) ;
  • Chung, Ju-Young (Department of Pediatrics, Sanggyepaik Hospital, Inje University College of Medicine) ;
  • Hwang, Eung-Soo (Department of Microbiology and Immunology, Seoul National University School of Medicine)
  • 한태희 (인제의대 상계백병원 진단검사의학교실) ;
  • 박상훈 (서울시 보건환경연구원 바이러스팀) ;
  • 정주영 (인제의대 상계백병원 소아청소년과) ;
  • 황응수 (서울의대 미생물학교실)
  • Received : 2015.03.30
  • Accepted : 2015.06.15
  • Published : 2015.08.25

Abstract

Purpose: Group A rotavirus (RV) is most common etiologic agent of acute gastroenteritis (AGE) in children worldwide. Recently, vaccination has been introduced in several countries to reduce the disease burden caused by RV infections, but continuous surveillance of RV strains is necessary to detect the emergence of potential variants induced by vaccine-immune pressure. This study aimed to investigate the changing pattern of RV genotypes in children with AGE, following the introduction of vaccination in Korea. Methods: Genotyping of RVs by RT-PCR on the basis of VP7 and VP4 gene segment sequence was carried out on 201 rotavirus-positive stool samples, from children hospitalized with AGE between August 2009 and June 2013. We have directly sequenced PCR products and analyzed the phylogenetic tree. Results: The most prevalent G genotype was G9 (33.3%), followed by G1 (22.4%), G3 (15.9%), G2 (6.0%), G4 (3.0%), G10 (1.5%), and mixed G-type (15.4%), with some nontypeable cases (2.5%). The detected P genotypes were P[4] (45.3%), P[8] (43.8%), mixed P-type (10.4 %), and P[2] (0.5%). The G9P[4] genotype was predominantly observed in hospitalized cases in Seoul in 2010/2011, however G1P[8] has been re-emerged as the predominant genotype in the following season (P =0.004). Conclusions: It seems that the periodic fluctuation in predominance of the G1, G3, and G9 strains occurred in Korea during 2009-2013, following the introduction of RV vaccination.

목적: 한국에 백신이 도입된 이후 장염으로 입원한 소아에서 확인된 로타바이러스 유전형의 분포를 알아보고자 하였다. 방법: 2009년 8월부터 2013년 6월 사이에 급성 위장관염으로 입원한 소아에게서 수집된 201개의 로타바이러스 양성 대변 검체를 대상으로 로타바이러스 유전형 분석이 시행되었다. 결과: G 유전형은 G9 (33.3%), G1 (22.4%), G3 (15.9%), G2 (6.0%), G4 (3.0%), G10 (1.5%)이었고 혼합형(15.4%) 및 분류불능(2.5%)이 관찰되었다. P 유전형은 P[4] (45.3%)과 P[8] (43.8%)가 주로 검출되었고 혼합형(10.4%)과 P[2] (0.5%)가 발견되었다. G9P[4] 유전형이 2010/2011년에 자주 검출되었으나 이후에 G1P[8] 유전형이 주로 검출되었다. 결론: 로타바이러스 백신 도입 이후 2009-2013년 동안 G1, G3 및 G9이 번갈아가며 주로 검출되는 것을 확인하였다.

Keywords

References

  1. Matthijnssens J, Ciarlet M, McDonald SM, Attoui H, Banyai K, Brister K, et al. Uniformity of rotavirus strain nomenclature proposed by the Rotavirus Classification Working Group (RCWG). Arch Virol 2011;156:1397-413. https://doi.org/10.1007/s00705-011-1006-z
  2. Matthijnssens J, Van Ranst M. Genotype constellation and evolution of group A rotaviruses infecting humans. Curr Opin Virol 2012;2:426-33. https://doi.org/10.1016/j.coviro.2012.04.007
  3. Banyai K, Laszlo B, Duque J, Steele AD, Nelson EA, Gentsch JR, et al. Systemic review of regional and temporal trends in global rotavirus strain diversity in the pre rotavirus vaccine era: insights for understanding the impact of rotavirus vaccine programs. Vaccine 2012;30:A122-30. https://doi.org/10.1016/j.vaccine.2011.09.111
  4. Than VT, Jeong S, Kim W. A systemic review of genetic diversity of human rotavirus circulating in South Korea. Infect Genet Evol 2014;28:462-91. https://doi.org/10.1016/j.meegid.2014.08.020
  5. Han TH, Kim CH, Chung JY, Park SH, Hwang ES. Genetic characterization of rotavirus in children in South Korea from 2007 to 2009. Arch Virol 2010;155:1663-73. https://doi.org/10.1007/s00705-010-0752-7
  6. Carvalho-Costa FA, Araujo IT, de Assis RMS, Fialho AM, Martins CM, Boja MN, et al. Rotavirus genotype distribution after vaccine introduction, Rio de Janeiro, Brazil. Emerg Infect Dis 2009;15:95-7. https://doi.org/10.3201/eid1501.071136
  7. Gurgel RQ, Cuevas LE, Vieira SC, Barros VC, Fontes PB, Salustino EF, et al. Predominance of rotavirus P[4]G2 in a vaccinated population, Brazil. Emerg Infect Dis 2007;13:1571-3. https://doi.org/10.3201/eid1310.070412
  8. Kirkwood CD, Boniface K, Barnes GL, Bishop RF. Distribution of rotavirus genotypes after introduction of rotavirus vaccines, Rotarix$^{(R)}$ and RotaTeq$^{(R)}$, into the National Immunization Program of Australia. Pediatr Infect Dis J 2011;30:S48-53. https://doi.org/10.1097/INF.0b013e3181fefd90
  9. Choe YJ, Yang JJ, Park SK, Choi EH, Lee HJ. Comparative estimation of coverage between national immunization program vaccines and non-NIP vaccines in Korea. J Korean Med Sci 2013;28:1283-8. https://doi.org/10.3346/jkms.2013.28.9.1283
  10. Lee SG, Jeon SY, Kim KY. 2012 Korea National Immunization Survey [internet]. Korean CDC [cited 2014 Aug 4]. Available from http://www.cdc.go.kr/CDC/info/CdcKrInfo0201.jsp?menuIds=HOME001-MNU1155-MNU1083-MNU1375-MNU0025&cid=20768.
  11. Banerjee I, Ramani S, Primrose B, Iturriza-Gomara M, Gray JJ, Brown DW, et al. Modification of rotavirus multiplex RT-PCR for the detection of G12 strains based on characterization of emerging G12 rotavirus strains from South India. J Med Virol 2007;79:1413-21. https://doi.org/10.1002/jmv.20872
  12. Gouvea V, Glass RI, Woods P, Taniguchi K, Clark HF, Forrester B, et al. Polymerase chain reaction amplification and typing of rotavirus nucleic acid from stool specimens. J Clin Microbiol 1990;28:276-82.
  13. Gentsch JR, Glass RI, Woods P, Gouvea V, Flores J, Das BK, et al. Identification of group A rotavirus gene 4 types by polymerase chain reaction. J Clin Microbiol 1992;30:1365-73.
  14. Iturriza-Gomara M, Kang G, Gray J. Rotavirus genotyping:keeping up with an evolving population of human rotaviruses. J Clin Virol 2004;31:259-65. https://doi.org/10.1016/j.jcv.2004.04.009
  15. Tamura K, Dudley J, Nei M, Kumar S. MEGA 4: Molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 2007;24:1596-9. https://doi.org/10.1093/molbev/msm092
  16. Choi UY, Lee SY, Ma SH, Jang YT, Kim JY, Kim HM, et al. Epidemiological changes in rotavirus gastroenteritis in children under 5 years of age after the introduction of RV vaccines in Korea. Eur J Pediatr 2013;172:947-52. https://doi.org/10.1007/s00431-013-1974-y
  17. da Silva MF, Gomez MM, Rose TL, Volotao Ede M, Carvalho-Costa FA, Bello G, et al. VP8*P[8] lineages of group A rotaviruses circulating over 20 years in Brazil: proposal of six different sub-lineages for P[8]-3 clade. Infect Genet Evol 2013;16:200-5. https://doi.org/10.1016/j.meegid.2013.01.004
  18. Linhares AC, Stupka JA, Ciapponi A, Bardach AE, Glujovsky D, Aruj PK, et al. Burden and typing of rotavirus group A in Latin America and the Caribbean: systematic review and meta-analysis. Rev Med Virol 2011;21:89-109. https://doi.org/10.1002/rmv.682
  19. Martinez M, Amarilla AA, Galeano ME, Aquino VH, Farina N, Russomando G, et al. Predominance of rotavirus G2P[4] and emergence of G12P[9] strains in Asuncion, Paraguay, 2006-2007. Arch Virol 2010;155:525-33. https://doi.org/10.1007/s00705-010-0617-0
  20. Huh JW, Kim WH, Yoon MH, Lim YH. Genotypic distribution of rotavirus strains causing severe gastroenteritis in Gyeonggi province, South Korea, from 2003 to 2005. Arch Virol 2009;154:167-70. https://doi.org/10.1007/s00705-008-0275-7
  21. Jeong HS, Lee KB, Jeong AY, Jo MY, Jung SY, Ahn JH, et al. Genotypes of the circulating rotavirus strains in the seven prevaccine seasons from September 2000 to August 2007 in South Korea. Clin Microbiol Infect 2011;17:232-5. https://doi.org/10.1111/j.1469-0691.2010.03232.x
  22. Kang JO, Kilgore P, Kim JS, Nyambat B, Kim J, Suh HS, et al. Molecular epidemiological profile of rotavirus in South Korea, July 2002 through June 2003; emergence of G4P[6] and G9P[8] strains. J Infect Dis 2005;192:S57-63. https://doi.org/10.1086/431502
  23. Kim JS, Kang JO, Cho SC, Jang YT, Min SA, Park TH, et al. Epidemiological profile of rotavirus infection in the Republic of Korea results from prospective surveillance in the Jeongeub District, 1 July 2002 through 30 June 2004. J Infect Dis 2005;195:S49-56.
  24. Shim JO, Thai Than V, Ryoo E, Lim I, Yoon Y, Kim K, et al. Distribution of rotavirus G and P genotypes approximately two years following the introduction of rotavirus vaccines in South Korea. J Med Virol 2013;85:1307-12. https://doi.org/10.1002/jmv.23586
  25. Hull JJ, Teel EN, Kerin TK, Freeman MM, Esona MD, Gentsch JR, et al, National Rotavirus Surveillance System. United States rotavirus strain surveillance from 2005 to 2008: genotype prevalence before and after vaccine introduction. Pediatr Infect Dis J 2011;30:S42-7. https://doi.org/10.1097/INF.0b013e3181fefd78
  26. Bok K, Matson DO, Gomez JA. Genetic variation of capsid protein VP7 in genotype g4 human rotavirus strains: simultaneous emergence and spread of different lineages in Argentina. J Clin Microbiol 2002;40:2016-22. https://doi.org/10.1128/JCM.40.6.2016-2022.2002
  27. Bucardo F, Karlsson B, Nordgren J, Paniaqua M, Gonzalez A, Amador JJ, et al. Mutated G4P[8] rotavirus associated with a nationwide outbreak of gastroenteritis in Nicargua in 2005. J Clin Microbiol 2007;45:990-7. https://doi.org/10.1128/JCM.01992-06
  28. Matthijnssens J, Helen E, Zeller M, Rahman M, Lemey P, Van Ranst M. Phylodynamic analyses of rotavirus genotypes G9 and G12 underscore their potential for swift global spread. Mol Biol Evol 2010;27:2431-6. https://doi.org/10.1093/molbev/msq137
  29. Esona MD, Banyai K, Foytich K, Freeman M, Mijatovic- Rustempasic S, Hull J, et al. Genomic characterization of human rotavirus G10 strains from the African Rotavirus Network: relationship to animal rotaviruses. Infect Genet Evol 2011;11:237-41. https://doi.org/10.1016/j.meegid.2010.09.010
  30. Chitambar SD, Ranshing SS, Pradhan GN, Kalrao VR, Dhongde RK, Bavdekar AR. Changing trends in circulating rotavirus strains in Pune, western India in 2009-2012: Emergence of a rare G9P[4] rotavirus strain. Vaccine 2014;32:A29-32. https://doi.org/10.1016/j.vaccine.2014.03.027
  31. Tatte VS, Chothe NS, Chitambar SD. Characterisation of rotavirus strains identified in adolescents and adults with acute gastroenteritis highlights circulation of non-typeable strains: 2008-2012. Vaccine 2014;32 Suppl 1:A68-74. https://doi.org/10.1016/j.vaccine.2014.03.009
  32. Afrad MH, Rahman MZ, Matthijnssens, Das SK, Faruque AS, Azim T, et al. High incidence of reassortant G9P[4] rotavirus strain in Bangladesh: Fully heterotypic from vaccine strains. J Clin Virol 2013;58:755-6. https://doi.org/10.1016/j.jcv.2013.09.024
  33. Yen C, Figueroa JR, Uribe ES, Carmen-Hernandez LD, Tate JE, Parashar UD, et al. Monovalent rotavirus vaccine provides protection against an emerging fully heterotypic G9P[4] rotavirus strain in Mexico. J Infect Dis 2011;204:783-6. https://doi.org/10.1093/infdis/jir390
  34. Afrad MH, Hassan Z, Farjana S, Moni S, Barua S, Das SK, et al. Changing profile of rotavirus genotypes in Bangladesh, 2006-2012. BMC Infect Dis 2013;13:e320. https://doi.org/10.1186/1471-2334-13-320
  35. Hemming M, Vesikari T. Genetic diversity of G1P[8] rotavirus VP7 and VP8 antigens in Finland over a 20-year period: no evidence for selection pressure by universal mass vaccination with $RotaTeq^{(R)}$ vaccine. Infect Genet Evol 2013;19:51-8. https://doi.org/10.1016/j.meegid.2013.06.026

Cited by

  1. Changing distribution of age, clinical severity, and genotypes of rotavirus gastroenteritis in hospitalized children after the introduction of vaccination: a single center study in Seoul between 2011 and 2014 vol.16, pp.1, 2016, https://doi.org/10.1186/s12879-016-1623-y
  2. Recent viral pathogen in acute gastroenteritis: a retrospective study at a tertiary hospital for 1 year vol.59, pp.3, 2016, https://doi.org/10.3345/kjp.2016.59.3.120
  3. 2015년부터 2018년까지 일개 이차병원에서 동정된 소아 급성 위장염 원인 병원체의 분자진단과 역학의 임상적 연구 vol.27, pp.2, 2015, https://doi.org/10.14776/piv.2020.27.e13