DOI QR코드

DOI QR Code

Stability Analysis of Embankment Overtopping by Initial Fluctuating Water Level

초기 변동수위를 고려한 제방 월류에 따른 안정성 분석

  • Received : 2015.05.28
  • Accepted : 2015.08.04
  • Published : 2015.08.31

Abstract

It is not possible to provide resonable evidence for embankment (or dam) overtopping in geotechnical engineering, and conventional analysis by hydrologic design has not provided the evidence for the overflow. However, hydrologic design analysis using Copula function demonstrates the possibility that dam overflow occurs when estimating rainfall probability with rainfall data for 40 years based on fluctuating water level of a dam. Hydrologic dam risk analysis depends on complex hydrologic analyses in that probabilistic relationship needs to be established to quantify various uncertainties associated with modeling process and inputs. The systematic approaches to uncertainty analysis for hydrologic risk analysis have not been addressed yet. In this paper, the initial level of a dam for stability of a dam is generally determined by normal pool level or limiting the level of the flood, but overflow of probability and instability of a dam depend on the sensitivity analysis of the initial level of a dam. In order to estimate the initial level, Copula function and HEC-5 rainfall-runoff model are used to estimate posterior distributions of the model parameters. For geotechnical engineering, slope stability analysis was performed to investigate the difference between rapid drawdown and overtopping of a dam. As a result, the slope instability in overtopping of a dam was more dangerous than that of rapid drawdown condition.

지반공학적으로 제방(또는 댐) 월류에 대한 근거를 제시하기 어렵다. 수문학적인 안정성 평가에서 댐의 초기수위(만수위)를 고정시키고 강우량을 계산하기 때문에 월류 가능성은 매우 희박하다. 그러나 Copula 함수를 사용하여 초기수위가 고정된 댐의 만수위가 아닌 변동성 있는 확률수위를 적용해서 국내 40년간의 빈도를 고려할 때, 월류 가능성을 확인할 수 있었다. 수문학적 댐의 위험성 분석은 다양한 불확실성 인자 중 댐 초기수위에 대한 모의기법 개발이 필요한 복잡한 수문학적 해석을 요구한다. 본 연구에서는 기존 댐 위험도 분석 시 초기수위는 상시만수위 또는 홍수기 제한수위로 가정하지만, 이러한 보수적인 가정에 의한 연구는 기상변동성 및 기후변화의 영향을 고려하지 못하며, 댐의 월류확률 및 이에 따른 붕괴확률을 추정하는데 있어서 지반공학적인 접근이 필요하다. Copula 함수를 이용하여 댐 특성에 맞는 초기수위를 결정하였으며, HEC-5 모형을 활용하여 강우-유출 모형 매개변수의 사후분포를 정량적으로 추정하여 댐 월류확률을 산정하였다. 지반공학적인 측면에서 댐 안정성 해석은 상류사면(upstream)의 수위급강하(drawdown)에 대한 안전율과 하류사면(downstream) 월류상태에서의 불안정성을 비교하여 지반공학적 위험도를 비교 분석하였다.

Keywords

References

  1. Babb, A.O. and Mermel, T.W. (1968), Catalog of Dam Disasters, Failures and Accidents, PB179243; Washington, DC (Bureau of Reclamation).
  2. Biswas, A.K. and Chatterjee, S. (1971), "Dam Disasters - an Assessment", Eng. J. (Canada), Vol.54, No.3, pp.3-8.
  3. Dekay, M.L. and McClelland, G. (1993), Predicting loss of life in cases of dam failure and flash flood, Risk Analysis, Vol.13, No.2.
  4. GeoStudio (2012), version 8.0.10, Manual for SEEP/W and SLOPE/W modeling, GEO-SLOPE International, Ltd., Calgary, Alberta, Canada.
  5. Gruner, E. (1967), The Mechanism of Dam Failure; in 9th Congress of the International Commission on Large Dams, Istanbul, Turkey, Question, No.34, R.12, pp.197-206.
  6. Hsu, Y.C., Tung, Y.K. and Kuo, J.T. (2011), Evaluation of dam overtopping probability induced by flood and wind, Stochastic Environmental Research and Risk Assessment, Vol.25, No.1, pp. 35-49. https://doi.org/10.1007/s00477-010-0435-7
  7. Kwon, H.H. and Moon, Y.I. (2006), Improvement of Overtopping Risk Evaluations Using Probabilistic Concepts for Existing Dams, Stochastic Environmental Research and Risk Assessment, Springer-Verlag, Vol. 20, No.4, pp.223-237. https://doi.org/10.1007/s00477-005-0017-2
  8. Kwon, H.H., Moon, Y.I., and Khalil, A.F. (2007), Nonparametric monte carlo simulation for flood frequency curve derivaion: An application to a KOREAN watershed, Journal of the AMERICAN water resources association, Vol.43 No.5, pp.1316-1328. https://doi.org/10.1111/j.1752-1688.2007.00115.x
  9. Lou, W.C. (1981), Mathematical Modeling of Earth Dam Breaches, Unpublished Ph.D. Dissertation, Colorado State University, Fort Collins, CO.
  10. Middlebrooks, T.A. (1953), Earth-Dam Practice in the United States. Teans. Amer. Soc. Civil Eng., No.118, pp.679-722.
  11. Na, B.-K., Kim, J.-Y., Lim, J.-Y., and Kwon, H.-H. (2014), "Improvement of Hydtologic Dam Risk Analysis Model Considering Uncertainty of Hydrologic Analysis Process", Journal of Korea water resources association, Vol.47, No.10, pp.853-865. https://doi.org/10.3741/JKWRA.2014.47.10.853
  12. Nelsen, R.B. (2006): An Introduction to Copula, Springer, New York, pp.109-155.
  13. Prendergast, J.D. (1979), Probabilistic Concept for Gravity Dam Analysis, Special Rep, M-265, Construction Engineering Research Lab, U.S. Army Corps of Engineers, Champaign.
  14. River Design Standard (2009), Ministry of Land, Infrastructure and Transport, 2009-732.
  15. Sklar, M. (1959), "Foncitions de Repartition a n Dimensions et Leurs Marges", Publications de Institut de Statistique Universite de Paris, Vol.8, pp.229-231.
  16. Takase, K. (1967), Statistic Study on Failure, Damage and Deterioration of Earth Dams in Japan, Proc. 9th Congress, Int. Commission on Large Dams, Istanbul, Turkey, Question, No.34, R.1, pp.1-19.
  17. van Genuchten (1980), "A Closed Form Equation for Predicting the Hydraulic Conductivity of Unsaturated Soils", Soil Science Society of America Journal, Vol.44, pp.892-898. https://doi.org/10.2136/sssaj1980.03615995004400050002x
  18. USCOLD (1975): Lessons from Large Dams, Report of the Committee on Failures and Accidents to Large Dams of USCOLD, published by American Society of Civil Engineers, New York.
  19. www.icold-cigb.org, International Commission on Large Dams, Paris, France.
  20. Yoo, C.S. and Kim, O.M. (1998), "A Study on Design of Geosynthetically Reinforced Slopes", Proceeding of Koean Society of Civil Engineering, pp.351-354.

Cited by

  1. 수치해석을 이용한 수위변동시 필댐의 거동특성 및 안전관리방안 vol.20, pp.1, 2021, https://doi.org/10.12814/jkgss.2021.20.1.045