SOME RESULTS OF p-BIHARMONIC MAPS INTO A NON-POSITIVELY CURVED MANIFOLD

YINGBO HAN AND WEI ZHANG

Abstract. In this paper, we investigate p-biharmonic maps $u : (M, g) \rightarrow (N, h)$ from a Riemannian manifold into a Riemannian manifold with non-positive sectional curvature. We obtain that if $\int_M |\tau(u)|^{a+p}dv_g < \infty$ and $\int_M |d(u)|^2dv_g < \infty$, then u is harmonic, where $a \geq 0$ is a nonnegative constant and $p \geq 2$. We also obtain that any weakly convex p-biharmonic hypersurfaces in space form $N(c)$ with $c \leq 0$ is minimal. These results give affirmative partial answer to Conjecture 2 (generalized Chen’s conjecture for p-biharmonic submanifolds).

1. Introduction

Harmonic maps play a central role in geometry. They are critical points of the energy $E(u) = \int_M \frac{|du|^2}{2}dv_g$ for smooth maps between manifolds $u : (M, g) \rightarrow (N, h)$ and the Euler-Lagrange equation is that tension field $\tau(u)$ vanishes. Extensions to the notions of p-harmonic maps, F-harmonic maps and f-harmonic maps were introduced and many results have been carried out (for instance, see [1, 2, 3, 8, 23]). In 1983, J. Eells and L. Lemaire [10] proposed the problem to consider the biharmonic maps: they are critical maps of the functional

$$E_2(u) = \int_M \frac{|\tau(u)|^2}{2}dv_g.$$

We see that harmonic maps are biharmonic maps and even more, minimizers of the bienergy functional. After G. Y. Jiang [15] studied the first and second variation formulas of the bienergy E_2, there have been extensive studies on biharmonic maps (for instance, see [9, 15, 16, 17, 21, 22, 24, 25]). Recently the first author and S. X. Feng in [13] introduced the following functional

$$E_{F,2}(u) = \int_M F\left(\frac{|\tau(u)|^2}{2}\right)dv_g,$$

Received January 15, 2015.
2010 Mathematics Subject Classification. 58E20, 53C21.
Key words and phrases. p-biharmonic maps, p-biharmonic submanifolds.
where \(\tau(u) = -\delta du = \text{trace} \bar{\nabla}(du) \). The map \(u \) is called an \(F \)-biharmonic map if it is a critical point of that \(F \)-bienergy \(E_{F,2}(u) \), which is a generalization of biharmonic maps, \(p \)-biharmonic maps [14] or exponentially biharmonic maps. Notice that harmonic maps are always \(F \)-biharmonic by definition. When \(F(t) = (2t)^2 \), we have a \(p \)-bienergy functional
\[
E_{p,2}(u) = \int_M |\tau(u)|^p dv_g,
\]
where \(p \geq 2 \). The Euler-Lagrange equation of \(E_{p,2} \) is \(\tau_{p,2}(u) = 0 \), where \(\tau_{p,2}(u) \) is given by (13). A map \(u : (M, g) \to (N, h) \) is called a \(p \)-biharmonic map if \(\tau_{p,2}(u) = 0 \). When \(u : (M, g) \to (N, h) \) is a \(p \)-biharmonic isometric immersion, then \(M \) is called a \(p \)-biharmonic submanifold in \(N \).

Recently, N. Nakaiuchi, H. Urakawa and S. Gudmundsson [21] proved that biharmonic maps from a complete Riemannian manifold into a non-positive curved manifold with finite bienergy and energy are harmonic. S. Maeta [20] proved that biharmonic maps from a complete Riemannian manifold into a non-positive curved manifold with finite \((a+2)\)-bienergy \(\int_M |\tau(u)|^{a+2} dv_g < \infty \) \((a \geq 0) \) and energy are harmonic. In this paper, we first obtain the following result:

Theorem 1.1 (cf. Theorem 3.1). Let \(u : (M^m, g) \to (N^n, h) \) be a \(p \)-biharmonic map from a Riemannian manifold \((M, g) \) into a Riemannian manifold \((N, h) \) with non-positive sectional curvature and let \(a \geq 0 \) be a non-negative real constant.

(i) If
\[
\int_M |\tau(u)|^{a+p} dv_g < \infty,
\]
and the energy is finite, that is,
\[
\int_M |du|^2 dv_g < \infty,
\]
then \(u \) is harmonic.

(ii) If \(\text{Vol}(M, g) = \infty \), and
\[
\int_M |\tau(u)|^{a+p} dv_g < \infty,
\]
then \(u \) is harmonic, where \(p \geq 2 \).

One of the most interesting problems in the biharmonic theory is Chen’s conjecture. In 1988, Chen raised the following problem:

Conjecture 1 ([7]). Any biharmonic submanifold in \(E^n \) is minimal.

There are many affirmative partial answers to Chen’s conjecture. On the other hand, Chen’s conjecture was generalized as follows (cf. [6]): “Any biharmonic submanifolds in a Riemannian manifold with non-positive sectional curvature is minimal”. There are also many affirmative partial answers to this conjecture.
(a) Any biharmonic submanifold in $H^3(-1)$ is minimal (cf. [5]).
(b) Any biharmonic hypersurfaces in $H^4(-1)$ is minimal (cf. [4]).
(c) Any weakly biharmonic hypersurfaces in space form $N^{m+1}(c)$ with $c \leq 0$ is minimal (cf. [18]).
(d) Any compact biharmonic submanifold in a Riemannian manifold with non-positive sectional curvature is minimal (cf. [15]).
(e) Any compact F-biharmonic submanifold in a Riemannian manifold with non-positive sectional curvature is minimal (cf. [13]).

For p-biharmonic submanifolds, it is natural to consider the following problem.

Conjecture 2. Any p-biharmonic submanifold in a Riemannian manifold with non-positive sectional curvature is minimal.

For p-biharmonic submanifolds, we obtain the following result:

Theorem 1.2 (cf. Theorem 4.1). Let $u: (M^m, g) \to (N^{m+1}, \langle , \rangle)$ be a weakly convex p-biharmonic hypersurface in a space form $N^{m+1}(c)$ with $c \leq 0$. Then u is minimal, where $p \geq 2$.

These results give affirmative partial answers to the generalized Chen’s conjecture for p-biharmonic submanifold.

2. Preliminaries

In this section we give more details for the definitions of harmonic maps, biharmonic maps, p-biharmonic maps and p-biharmonic submanifolds.

Let $u: (M^m, g) \to (N^n, h)$ be a map from an m-dimensional Riemannian manifold (M, g) to an n-dimensional Riemannian manifold (N, h). The energy of u is defined by

$$E(u) = \int_M \frac{|du|^2}{2} dv_g.$$

The Euler-Lagrange equation of E is

$$\tau(u) = \sum_{i=1}^m \{\tilde{\nabla}_e du(e_i) - du(\nabla_e e_i)\} = 0,$$

where we denote by ∇ the Levi-Civita connection on (M, g) and $\tilde{\nabla}$ the induced Levi-civita connection on $u^{-1}TN$ and $\{e_i\}_{i=1}^m$ is an orthonormal frame field on (M, g). $\tau(u)$ is called the tension field of u. A map $u: (M, g) \to (N, h)$ is called a harmonic map if $\tau(u) = 0$.

To generalize the notion of harmonic maps, in 1983 J. Eells and L. Lemaire [10] proposed considering the bienergy functional

$$E_2(u) = \int_M \frac{|\tau(u)|^2}{2} dv_g.$$
In 1986, G. Y. Jiang [15] studied the first and second variation formulas of the bienergy E_2. The Euler-Lagrange equation of E_2 is

$$
\tau_2(u) = -\tilde{\Delta}(\tau(u)) - \sum_i R^N(\tau(u), du(e_i))du(e_i) = 0,
$$

where $\tilde{\Delta} = \sum_i (\bigtriangledown_{e_i} \bigtriangledown_{e_i} - \bigtriangledown_{\bigtriangledown_{e_i}} e_i)$ is the rough Laplacian on the section of $u^{-1}TN$ and $R^N(X, Y) = [N\nabla_X, N\nabla_Y] - N\nabla_{[X,Y]}$ is the curvature operator on N. A map $u : (M, g) \to (N, h)$ is called a biharmonic map if $\tau_2(u) = 0$.

To generalize the notion of biharmonic maps, the first author and S. X. Feng [13] introduced the F-bienergy functional

$$
E_{F, 2}(u) = \int_M F\frac{|\tau(u)|^2}{2}dv_g,
$$

where $F : [0, \infty) \to [0, \infty)$ is a C^3 function such that $F'' > 0$ on $(0, \infty)$. The Euler-Lagrange equation of $E_{F, 2}$ is

$$
\tau_{F, 2}(u) = -\tilde{\Delta}(F'\frac{|\tau(u)|^2}{2})\tau(u) - \sum_i R^N(F'\frac{|\tau(u)|^2}{2})\tau(u), du(e_i))du(e_i) = 0.
$$

A map $u : (M, g) \to (N, h)$ is called a F-biharmonic map if $\tau_{F, 2}(u) = 0$.

When $F(t) = (2t)^{\tilde{\tau}}$, we have a p-bienergy functional

$$
E_{p, 2}(u) = \int_M |\tau(u)|^p dv_g,
$$

where $p \geq 2$. The Euler-Lagrange equation of $E_{p, 2}$ is

$$
\tau_{p, 2}(u) = -\tilde{\Delta}(p|\tau(u)|^{p-2}\tau(u)) - \sum_i R^N(p|\tau(u)|^{p-2}\tau(u), du(e_i))du(e_i) = 0.
$$

A map $u : (M, g) \to (N, h)$ is called a p-biharmonic map if $\tau_{p, 2}(u) = 0$.

Now we recall the definition of p-biharmonic submanifolds (cf. [12]).

Let $u : (M, g) \to (N, h = \langle \cdot, \cdot \rangle)$ be an isometric immersion from an m-dimensional Riemannian manifold into an $m + \ell$-dimensional Riemannian manifold. We identify $du(X)$ with $X \in \Gamma(TM)$ for each $x \in M$. We also denote by $\langle \cdot, \cdot \rangle$ the induced metric $u^{-1}h$. The Gauss formula is given by

$$
N\nabla_X Y = \nabla_X Y + B(X, Y), \quad X, Y \in \Gamma(TM),
$$

where B is the second fundamental form of M in N. The Weingarten formula is given by

$$
N\nabla_X \xi = -A_\xi X + \nabla_X^\perp \xi, \quad X \in \Gamma(TM), \ \xi \in \Gamma(T^\perp M),
$$

where A_ξ is the shape operator for a unit normal vector field ξ on M, and ∇^\perp denotes the normal connection on the normal bundle of M in N. For any $x \in M$, the mean curvature vector field H of M at x is given by

$$
H = \frac{1}{m} \sum_{i=1}^m B(e_i, e_i).$$
If an isometric \(u: (M, g) \to (N, h)\) is \(p\)-biharmonic, then \(M\) is called a \(p\)-biharmonic submanifold in \(N\). In this case, we remark that the tension field \(\tau(u)\) of \(u\) is written \(\tau(u) = mH\), where \(H\) is the mean curvature vector field of \(M\). The necessary and sufficient condition for \(M\) in \(N\) to be \(p\)-biharmonic is the following:

\[
-\tilde{\Delta}(|H|^{p-2}H) - \sum_{i} R^N(|H|^{p-2}H, e_i)e_i = 0.
\]

From (1), we obtain the necessary and sufficient condition for \(M\) in \(N\) to be \(p\)-biharmonic as follows:

\[
\Delta^\perp(|H|^{p-2}H) - \sum_{i=1}^m B(e_i, A|H|^{p-2}H(e_i)) + \sum_{i=1}^m R^N(|H|^{p-2}H, e_i)e_i = 0,
\]

\[
Tr_g(\nabla A|H|^{p-2}H) + Tr_g[A\nabla^\perp(|H|^{p-2}H)] - \sum_{i=1}^m R^N(|H|^{p-2}H, e_i)e_i) = 0,
\]

where \(\Delta^\perp = \sum_{i=1}^m \nabla^\perp_{e_i} \nabla^\perp_{e_i} - \nabla^\perp_{\nabla^\perp_{e_i} e_i}\) is the Laplace operator associated with the normal connection \(\nabla^\perp\).

We also need the following lemma.

Lemma 2.1 (Gaffney, [11]). Let \((M, g)\) be a complete Riemannian manifold. If a \(C^1\) -form \(\alpha\) satisfies that \(\int_M |\alpha| dv_g < \infty\) and \(\int_M (\delta \alpha) dv_g < \infty\), or equivalently, a \(C^1\) vector \(X\) defined by \(\alpha(Y) = \langle X, Y \rangle \) (\(\forall Y \in \Gamma(TM)\)) satisfies that \(\int_M |X| dv_g < \infty\) and \(\int_M \text{div}(X) dv_g < \infty\), then

\[
\int_M (-\delta \alpha) dv_g = \int_M \text{div}(X) dv_g = 0.
\]

3. Main results of \(p\)-biharmonic maps

In this section, we obtain the following result.

Theorem 3.1. Let \(u: (M^m, g) \to (N^n, h)\) be a \(p\)-biharmonic map from a Riemannian manifold \((M, g)\) into a Riemannian manifold \((N, h)\) with non-positive sectional curvature and let \(a \geq 0\) be a non-negative real constant.

(i) If

\[
\int_M |\tau(u)|^{a+p} dv_g < \infty,
\]

and the energy is finite, that is,

\[
\int_M |du|^2 dv_g < \infty,
\]

then \(u\) is harmonic.

(ii) If \(\text{Vol}(M, g) = \infty\), and

\[
\int_M |\tau(u)|^{a+p} dv_g < \infty,
\]

then \(u\) is harmonic.
then \(u \) is harmonic, where \(p \geq 2 \).

Proof. Take a fixed point \(x_0 \in M \) and for every \(r > 0 \), let us consider the following cut off function \(\lambda(x) \) on \(M \):

\[
\begin{cases}
0 \leq \lambda(x) \leq 1, & x \in M, \\
\lambda(x) = 1, & x \in B_r(x_0), \\
\lambda(x) = 0, & x \in M - B_{2r}(x_0), \\
|\nabla \lambda| \leq \frac{C}{r}, & x \in M,
\end{cases}
\]

where \(B_r(x_0) = \{ x \in M : d(x, x_0) < r \} \), \(C \) is a positive constant and \(d \) is the distance of \((M, g) \). From (13), we have

\[
\int_M \langle -\tilde{\Delta}(|\tau(u)|^{p-2}\tau(u)), \lambda^2|\tau(u)|^a\tau(u) \rangle dv_g
\]

(6) \[
= \int_M \lambda^2|\tau(u)|^{a+p-2} \sum_{i=1}^{m} \langle R^N(\tau(u), du(e_i))du(e_i), \tau(u) \rangle dv_g \leq 0,
\]

since the sectional curvature of \((N, h) \) is non-positive. From (6), we have

\[
0 \geq \int_M \langle -\tilde{\Delta}(|\tau(u)|^{p-2}\tau(u)), \lambda^2|\tau(u)|^a\tau(u) \rangle dv_g
\]

\[
= \int_M \langle \tilde{\nabla}(|\tau(u)|^{p-2}\tau(u)), \tilde{\nabla}(\lambda^2|\tau(u)|^a\tau(u)) \rangle dv_g
\]

\[
= \int_M \sum_{i=1}^{m} \langle \tilde{\nabla}_{e_i}(|\tau(u)|^{p-2}\tau(u)), \tilde{\nabla}_{e_i}(\lambda^2|\tau(u)|^a\tau(u)) \rangle dv_g
\]

\[
= \int_M \sum_{i=1}^{m} \left[\langle |\tau(u)|^{p-2}\tilde{\nabla}_{e_i}\tau(u) + (p-2)|\tau(u)|^{p-4}\langle \tilde{\nabla}_{e_i}\tau(u), \tau(u) \rangle \tau(u) \rangle, \lambda^2|\tau(u)|^a\tau(u) \rangle dv_g
\]

\[
= \int_M \sum_{i=1}^{m} \left[\langle |\tau(u)|^{p-2}\tilde{\nabla}_{e_i}\tau(u) + (p-2)|\tau(u)|^{p-4}\langle \tilde{\nabla}_{e_i}\tau(u), \tau(u) \rangle \tau(u) \rangle, \lambda^2|\tau(u)|^a\tau(u) \rangle dv_g
\]

\[
+ 2\lambda e_i(\lambda)|\tau(u)|^a\tau(u) + a\lambda^2|\tau(u)|^{a+2}\langle \tilde{\nabla}_{e_i}\tau(u), \tau(u) \rangle \tau(u) \rangle dv_g
\]

\[
+ \lambda^2|\tau(u)|^a\tilde{\nabla}_{e_i}\tau(u) \rangle dv_g
\]

\[
= \int_M \sum_{i=1}^{m} 2(p-1)\lambda e_i(\lambda)|\tau(u)|^{a+p-2}\langle \tilde{\nabla}_{e_i}\tau(u), \tau(u) \rangle dv_g
\]

\[
+ \int_M \sum_{i=1}^{m} [a(p-1) + (p-2)]\lambda^2|\tau(u)|^{a+p-4}\langle \tilde{\nabla}_{e_i}\tau(u), \tau(u) \rangle dv_g
\]

\[
+ \int_M \sum_{i=1}^{m} \lambda^2|\tau(u)|^{a+p-2}\langle \tilde{\nabla}_{e_i}\tau(u), \tilde{\nabla}_{e_i}\tau(u) \rangle dv_g
\]
By assumption
\begin{equation}
\int_M \sum_{i=1}^m 2(p-1)\lambda e_i(\lambda)|\tau(u)|^{a+p-2}\langle \tilde{\nabla}_{e_i} \tau(u), \tau(u) \rangle dv_g \\
(7) + \int_M \sum_{i=1}^m \lambda^2 |\tau(u)|^{a+p-2}\langle \tilde{\nabla}_{e_i} \tau(u), \tilde{\nabla}_{e_i} \tau(u) \rangle dv_g,
\end{equation}
where the inequality follows from \(|a(p-1) + (p-2)|\lambda^2|\tau(u)|^{a+p-4}\langle \tilde{\nabla}_{e_i} \tau(u), \tau(u) \rangle^2 \geq 0.
\end{equation}
\begin{equation}
\end{equation}
\begin{equation}
\end{equation}
From (7), we have
\begin{equation}
\int_M \sum_{i=1}^m \lambda^2 |\tau(u)|^{a+p-2}\langle \tilde{\nabla}_{e_i} \tau(u), \tilde{\nabla}_{e_i} \tau(u) \rangle dv_g
\end{equation}
\begin{equation}
\leq -2(p-1) \int_M \sum_{i=1}^m \langle \tilde{\nabla}_{e_i} \tau(u), \lambda e_i(\lambda) |\tau(u)|^{a+p-2} \tau(u) \rangle dv_g.
\end{equation}
By using Young's inequality, we have
\begin{equation}
-2(p-1) \int_M \sum_{i=1}^m \langle \tilde{\nabla}_{e_i} \tau(u), \lambda e_i(\lambda) |\tau(u)|^{a+p-2} \tau(u) \rangle dv_g \\
\leq \frac{1}{2} \int_M \sum_{i=1}^m \lambda^2 |\tau(u)|^{a+p-2} \langle \tilde{\nabla}_{e_i} \tau(u), \tilde{\nabla}_{e_i} \tau(u) \rangle^2 dv_g + 2(p-1)^2 \int_M |\nabla \lambda|^2 |\tau(u)|^{a+p} dv_g.
\end{equation}
From (8) and (9), we have
\begin{equation}
\int_M \sum_{i=1}^m \lambda^2 |\tau(u)|^{a+p-2}\langle \tilde{\nabla}_{e_i} \tau(u), \tilde{\nabla}_{e_i} \tau(u) \rangle dv_g \\
\leq 4(p-1)^2 \int_M |\nabla \lambda|^2 |\tau(u)|^{a+p} dv_g \\
\leq \frac{4(p-1)^2 C^2}{r^2} \int_M |\tau(u)|^{a+p} dv_g \\
(10) \leq \frac{4(p-1)^2 C^2}{r^2} \int_M |\tau(u)|^{a+p} dv_g.
\end{equation}
By assumption \int_M |\tau(u)|^{a+p} dv_g < \infty, letting \(r \to \infty\) in (10), we have
\begin{equation}
\int_M \sum_{i=1}^m |\tau(u)|^{a+p-2}\langle \tilde{\nabla}_{e_i} \tau(u), \tilde{\nabla}_{e_i} \tau(u) \rangle dv_g = 0.
\end{equation}
Therefore, we obtain that \(|\tau(u)|\) is constant and \(\nabla_X \tau(u) = 0\) for any vector field \(X\) on \(M\).
Therefore, if \(Vol(M) = \infty\) and \(|\tau(u)| \neq 0\), then
\begin{equation}
\int_M |\tau(u)|^{a+p} dv_g = |\tau(u)|^{a+p} Vol(M) = \infty,
\end{equation}
which yields a contradiction. Thus, we have \(|\tau(u)| = 0\), i.e., \(u\) is harmonic. We have (ii).
For (i), assume both $\int_M |\tau(u)|^{a+p}dv_g < \infty$ and $\int_M |du|^2dv_g < \infty$. Define a 1-from α on M defined by
\begin{equation}
\alpha(X) = |\tau(u)|^{\frac{a+p}{2p}}(du(X), \tau(u))
\end{equation}
for any vector $X \in \Gamma(TM)$.

Note here that
\[\int_M |\alpha|^2dv_g = \int_M \left[\sum_{i=1}^m |\alpha(e_i)|^2 \right]^{\frac{2}{3}}dv_g = \int_M \left[\sum_{i=1}^m |\tau(u)|^{\frac{a+p}{2p}}(du(e_i), \tau(u)) \right]^{\frac{2}{3}}dv_g \leq \int_M |\tau(u)|^{\frac{a+p}{p}}|du|dv_g \leq \int_M |\tau(u)|^{a+p}dv_g \leq \int_M |du|^2dv_g^{\frac{2}{p}} < \infty.
\]

Now we compute
\[-\delta \alpha = \sum_{i=1}^m (\nabla_{e_i} \alpha)(e_i) = \sum_{i=1}^m (\nabla_{e_i} \alpha(e_i) - \alpha(\nabla_{e_i} e_i)) = \sum_{i=1}^m \nabla_{e_i} [|\tau(u)|^{\frac{a+p}{2p}}(du(e_i), \tau(u))] - \sum_{i=1}^m |\tau(u)|^{\frac{a+p}{2p}}(du(\nabla_{e_i} e_i), \tau(u)) = \sum_{i=1}^m |\tau(u)|^{\frac{a+p}{2p}}(\tilde{\nabla}_{e_i} du(e_i) - du(\nabla_{e_i} e_i), \tau(u)) = |\tau(u)|^{\frac{a+p}{2p}+1},\]

where the fourth equality follows from that $|\tau(u)|$ is constant and $\tilde{\nabla}_X \tau(u) = 0$ for $X \in \Gamma(TM)$. Since $\int_M |\tau(u)|^{a+p}dv_g < \infty$ and $|\tau(u)|$ is constant, the function $-\delta \alpha$ is also integrable over M. From this and (12), we can apply Lemma 2.1 for the 1-from α. Therefore we have
\[0 = \int_M (-\delta \alpha)dv_g = \int_M |\tau(u)|^{\frac{a+p}{2p}+1}dv_g,\]
so we have $\tau(u) = 0$, that is, u is harmonic. \hfill \Box

4. Main results of p-biharmonic hypersurfaces

In this section, we obtain the following result.
Theorem 4.1. Let \(u : (M^n, g) \to (N^{m+1}, (,)) \) be a weakly convex \(p \)-biharmonic hypersurface in a space form \(N^{m+1}(c) \) with \(c \leq 0 \). Then \(u \) is minimal, where \(p \geq 2 \).

Proof. Assume that \(H = h\nu \), where \(\nu \) is the unit normal vector field on \(M \). Since \(M \) is weakly convex, we have \(h \geq 0 \). Set \(C = \{ q \in M : h(q) > 0 \} \). We will prove that \(A \) is an empty set.

If \(C \) is not empty, we see that \(C \) is an open subset of \(M \). We assume that \(C_1 \) is a nonempty connect component of \(C \). We will prove that \(h \equiv 0 \) in \(C_1 \), thus a contradiction.

Firstly, we prove that \(h \) is a constant in \(C_1 \).

Let \(q \in C_1 \) be a point. Choose a local orthonormal frame \(\{ e_i, i = 1, \ldots, m \} \) around \(q \) such that \((B, \nu) \) is a diagonal matrix and \(\nabla e_i, e_j|_q = 0 \).

From equation (3), we have at \(q \)

\[
0 = \sum_{i=1}^{m} (\nabla e_i, A_{(h^{p-2}H)}(e_i), e_k) + \sum_{i=1}^{m} A_{\nabla e_i} \perp (h^{p-2}H)(e_i), e_k)
\]

\[
= \sum_{i=1}^{m} e_i (A_{(h^{p-2}H)}(e_i), e_k) + \sum_{i=1}^{m} (B(e_i, e_k), \nabla e_i \perp (h^{p-2}H))
\]

\[
= \sum_{i=1}^{m} e_i (h^{p-2}H, B(e_i, e_k)) + \sum_{i=1}^{m} (B(e_i, e_k), \nabla e_i \perp (h^{p-2}H))
\]

\[
= \sum_{i=1}^{m} (h^{p-2}H, \nabla e_i \perp B(e_i, e_i)) + 2 \sum_{i=1}^{m} (B(e_i, e_k), \nabla e_i \perp (h^{p-2}H))
\]

\[
= \sum_{i=1}^{m} \lambda_k e_k(h) + 2(p-1)h^{p-2}\lambda_0 e_k(h)
\]

where \(\lambda_k \) is the \(k \)th principle curvature of \(M \) at \(q \), which is nonnegative by the assumption that \(M \) is weakly convex. Since \((mh + 2(p-1)\lambda_k)h^{p-2} > 0 \) at \(q \), we have \(e_k(h) = 0 \) at \(q \), for \(k = 1, \ldots, m \), which implies that \(\nabla h = 0 \) at \(q \). Because \(q \) is an arbitrary point in \(C_1 \), we have \(\nabla h = 0 \) in \(C_1 \). Therefore we obtain that \(h \) is constant in \(C_1 \).

Secondly, we prove that \(h \) is zero in \(C_1 \).

From the equation (2), we have

\[
\Delta h^{2p-2} = \Delta (h^{p-2}H, h^{p-2}H)
\]

\[
= 2(\Delta^\perp (h^{p-2}H), h^{p-2}H) + 2||\nabla^\perp (h^{p-2}H)||^2
\]
\[= 2|\nabla^\perp (h^{p-2}H)|^2 + 2 \sum_{i=1}^{m} \langle B(A_{h^{p-2}H} e_i, e_i), h^{p-2}H \rangle - \sum_{i=1}^{m} \langle R^N(h^{p-2}H, e_i)e_i, h^{p-2}H \rangle \geq |\nabla^\perp (h^{p-2}H)|^2 + 2 \sum_{i=1}^{m} \langle B(A_{h^{p-2}H} e_i, e_i), h^{p-2}H \rangle,\]

where the inequality follows from the sectional curvature of \((N, h)\) is non-positive. Now we state two inequalities:

\[(14) \quad |\nabla^\perp (h^{p-2}H)|^2 \geq h^{2p-4}|\nabla^\perp H|^2 \]

and

\[(15) \quad \sum_{i=1}^{m} \langle B(A_{h^{p-2}H} e_i, e_i), h^{p-2}H \rangle \geq mh^{2p}.\]

In fact,

\[
|\nabla^\perp (h^{p-2}H)|^2 = |(p-2)h^{p-4}\langle \nabla^\perp H, H \rangle \bar{H} + h^{p-2}\nabla^\perp H|^2 \\
= (p-2)^2h^{2p-6}\langle \nabla^\perp H, H \rangle^2 + h^{2p-4}|\nabla^\perp H|^2 \\
+ 2(p-2)h^{3p-6}\langle \nabla^\perp H, H \rangle^2 \\
\geq h^{2p-4}|\nabla^\perp H|^2,
\]

and

\[
\sum_{i=1}^{m} \langle B(A_{h^{p-2}H} e_i, e_i), h^{p-2}H \rangle \\
= \sum_{i=1}^{m} h^{2p-2}\langle B(A_{\nu} e_i, e_i), \nu \rangle \\
= \sum_{i=1}^{m} h^{2p-2}\langle A_{\nu} e_i, A_{\nu} e_i \rangle \\
= \sum_{i,j=1}^{m} h^{2p-2}|\langle B(e_i, e_j), \nu \rangle|^2 \\
\geq mh^{2p}.
\]

From (13), (14) and (15), we have

\[\Delta h^{2p-2} \geq 2h^{2p-4}|\nabla^\perp H|^2 + 2mh^{2p}.\]

So we have

\[(16) \quad \Delta h^{2p-2} \geq 2mh^{2p}.\]
From equation (16), we have in C_1

$$0 = \triangle h^{2p-2} \geq 2m h^{2p}.$$

We know that $h \equiv 0$ in C_1. This is a contradiction. □

Acknowledgements. This work was supported by the National Natural Science Foundation of China (Grant Nos.11201400, 11201447); Basic and Frontier Technology Research Project of Henan Province (Grant No.142300410433) and Project for youth teacher of Xinyang Normal University (Grant No.2014-QN-061).

References

YINGBO HAN
College of Mathematics and Information Science
Xinyang Normal University
Xinyang, 464000, Henan, P. R. China
E-mail address: yingbohan@163.com

WEI ZHANG
School of Mathematics
South China University of Technology
Guangzhou, 510641, Guangdong, P. R. China
E-mail address: sczhangw@scut.edu.cn