DOI QR코드

DOI QR Code

Synthesis and Microstructure of Fe-Base Superalloy Powders with Y-Oxide Dispersion by High Energy Ball Milling

고에너지 볼 밀링을 이용한 Y-산화물 분산 Fe-기초내열합금 분말의 합성 및 미세조직 특성

  • Yim, Da-Mi (Department of Materials Science and Engineering, Seoul National University of Science and Technology) ;
  • Park, Jong Kwan (R&D Center, Korea Sintered Metal Co., Ltd.) ;
  • Oh, Sung-Tag (Department of Materials Science and Engineering, Seoul National University of Science and Technology)
  • 임다미 (서울과학기술대학교 신소재공학과) ;
  • 박종관 (대한소결금속(주) 기술연구소) ;
  • 오승탁 (서울과학기술대학교 신소재공학과)
  • Received : 2015.07.07
  • Accepted : 2015.07.17
  • Published : 2015.08.27

Abstract

Fe-base superalloy powders with $Y_2O_3$ dispersion were prepared by high energy ball milling, followed by spark plasma sintering for consolidation. High-purity elemental powders with different Fe powder sizes of 24 and 50 mm were used for the preparation of $Fe-20Cr-4.5Al-0.5Ti-O.5Y_2O_3$ powder mixtures (wt%). The milling process of the powders was carried out in a horizontal rotary ball mill using a stainless steel vial and balls. The milling times of 1 to 5 h by constant operation (350 rpm, ball-to-powder ratio of 30:1 in weight) or cycle operation (1300 rpm for 4 min and 900 rpm for 1 min, 15:1) were applied. Microstructural observation revealed that the crystalline size of Fe decreased with an increase in milling time by cyclic operation and was about 15 nm after 3 h, forming a FeCr alloy phase. The cyclic operation had an advantage over constant milling in that a smaller-agglomerated structure was obtained. The milled powders were sintered at $1100^{\circ}C$ for 30 min in vacuum. With an increase in milling time, the sintered specimen showed a more homogeneous microstructure. In addition, a homogenous distribution of Y-compound particles in the grain boundary was confirmed by EDX analysis.

Keywords

References

  1. T. M. Pollock and S. Tin, J. Propul. Power, 22(2), 361 (2006). https://doi.org/10.2514/1.18239
  2. D. Furrer and H. Fecht, JOM, 51(1), 14 (1999). https://doi.org/10.1007/s11837-999-0005-y
  3. J. S. Benjamin, Metall. Trans., 1(10), 2943 (1970). https://doi.org/10.1007/BF03037835
  4. A. O. F. Hayama, H. R. Z. Sandim, J. F. C. Lins, M. F. Hupalo and A. F. Padilha, Mater. Sci. Eng. A, 371(1-2), 198 (2004). https://doi.org/10.1016/j.msea.2003.11.052
  5. J. Rosler and E. Arzt, Acta Metall. Mater., 38(4), 671 (1990). https://doi.org/10.1016/0956-7151(90)90223-4
  6. J. H. Lee and J. H. Kim, J. Korean Powder Metall. Inst., 20(3), 228 (2013) (in Korean).
  7. R. L. Klueh, J. P. Shingledecker, R. W. Swindeman and D. T. Hoelzer, J. Nucl. Mater., 341(2-3), 103 (2005). https://doi.org/10.1016/j.jnucmat.2005.01.017
  8. C. Capdevila and H. K. D. H. Bhadeshia, Adv. Eng. Mater., 3(9), 647 (2001). https://doi.org/10.1002/1527-2648(200109)3:9<647::AID-ADEM647>3.0.CO;2-4
  9. Y. D. Kim, J. Y. Chung, J. Kim and H. Jeon, Mater. Sci. Eng., A291(1-2), 17 (2000).
  10. C. Suryanarayana, Prog. Mater. Sci., 46(1-2), 1 (2001). https://doi.org/10.1016/S0079-6425(99)00010-9
  11. D. K. Mukhopadhyay, F. H. Froes and D. S. Gelles, J. Nucl. Mater., 258-263, 1209 (1998). https://doi.org/10.1016/S0022-3115(98)00188-3
  12. B. F. O. Costa, G. Le Caer, J. M. Loureiro and V. S. Amaral, J. Alloys and Compd., 424(1-2), 131 (2006). https://doi.org/10.1016/j.jallcom.2005.12.070
  13. L. Ma, B. S. -J. Kang, M. A. Alvin and C. C. Huang, Kona Powder Particle J., 31, 146 (2014). https://doi.org/10.14356/kona.2014004
  14. B. D. Cullity, Elements of X-ray Diffraction, 2nd ed., p. 102, Addison-Wesley Publ. Co. Inc., Reading, USA, (1978).
  15. N. Tamari, T. Tanaka, K. Tanaka, I. Kondoh, M. Kawahara and M. Tokita, J. Ceram. Soc., Jpn., 103(7), 740 (1995). https://doi.org/10.2109/jcersj.103.740
  16. E. -K. Park, S. -M. Hong, J. -J. Park, M. -K. Lee, C.-K. Rhee and K. -W. Seol, J. Korean Powder Metall. Inst., 20(4), 275 (2013). https://doi.org/10.4150/KPMI.2013.20.4.275