DOI QR코드

DOI QR Code

Effect of Al2O3 Inter-Layer Grown on FeCrAl Alloy Foam to Improve the Dispersion and Stability of NiO Catalysts

NiO 촉매의 분산성 및 안정성 향상을 위하여 FeCrAl 합금 폼 위에 성장된 Al2O3 Inter-Layer 효과

  • Lee, Yu-Jin (Department of Materials Science and Engineering, Seoul National University of Science and Technology) ;
  • Koo, Bon-Ryul (Department of Materials Science and Engineering, Seoul National University of Science and Technology) ;
  • Baek, Seong-Ho (Energy Research Division, Daegu Gyeongbuk Institute of Science & Technology) ;
  • Park, Man-Ho (Alantum) ;
  • Ahn, Hyo-Jin (Department of Materials Science and Engineering, Seoul National University of Science and Technology)
  • 이유진 (서울과학기술대학교 신소재공학과) ;
  • 구본율 (서울과학기술대학교 신소재공학과) ;
  • 백성호 (대구경북과학기술원 나노.에너지융합연구부) ;
  • 박만호 ((주) Alantum) ;
  • 안효진 (서울과학기술대학교 신소재공학과)
  • Received : 2015.06.22
  • Accepted : 2015.07.20
  • Published : 2015.08.27

Abstract

NiO catalysts/$Al_2O_3$/FeCrAl alloy foam for hydrogen production was prepared using atomic layer deposition (ALD) and subsequent dip-coating methods. FeCrAl alloy foam and $Al_2O_3$ inter-layer were used as catalyst supports. To improve the dispersion and stability of NiO catalysts, an $Al_2O_3$ inter-layer was introduced and their thickness was systematically controlled to 0, 20, 50 and 80 nm using an ALD technique. The structural, chemical bonding and morphological properties (including dispersion) of the NiO catalysts/$Al_2O_3$/FeCrAl alloy foam were characterized by X-ray diffraction, X-ray photoelectron spectroscopy, field-emission scanning electron microscopy and scanning electron microscopy-energy dispersive spectroscopy. In particular, to evaluate the stability of the NiO catalysts grown on $Al_2O_3$/FeCrAl alloy foam, chronoamperometry tests were performed and then the ingredient amounts of electrolytes were analyzed via inductively coupled plasma spectrometer. We found that the introduction of $Al_2O_3$ inter-layer improved the dispersion and stability of the NiO catalysts on the supports. Thus, when an $Al_2O_3$ inter-layer with a 80 nm thickness was grown between the FeCrAl alloy foam and the NiO catalysts, it indicated improved dispersion and stability of the NiO catalysts compared to the other samples. The performance improvement can be explained by optimum thickness of $Al_2O_3$ inter-layer resulting from the role of a passivation layer.

Keywords

References

  1. S. D. Angeli, G. Monteleone, A. Giaconia and A. A. Lemonidou, Int. J. Hydrogen Energy, 39(5), 1979 (2014). https://doi.org/10.1016/j.ijhydene.2013.12.001
  2. G. Lee, Y. Park, N-K Park, T. J. Lee and M. Kang, Clean Technol., 18, 355 (2012). https://doi.org/10.7464/ksct.2012.18.4.355
  3. X. Hu and G. Lu, Green Chem., 11, 724 (2009). https://doi.org/10.1039/b814009j
  4. P. S. Roy, N-K Park and K. Kim, Int. J. Hydrogen Energy, 39(9), 4299 (2014). https://doi.org/10.1016/j.ijhydene.2014.01.004
  5. S. Rakass, H. Oudghiri-Hassani, P. Rowntree and N. Abatzoglou, J. Power Sources, 158, 485 (2006). https://doi.org/10.1016/j.jpowsour.2005.09.019
  6. N. Laosiripojana and S. Assabumrungrat, Appl. Catal., A, 290, 200 (2005). https://doi.org/10.1016/j.apcata.2005.05.026
  7. J. Sehested, Catal. Today, 111, 103 (2006). https://doi.org/10.1016/j.cattod.2005.10.002
  8. S-Y Kim, S-H Choi, J-Y Yun, Y-M Kong, B-K Kim and K-A Lee, J. Kor. Inst. Surf. Eng., 44, 13 (2011). https://doi.org/10.5695/JKISE.2011.44.1.013
  9. M. Karakaya, S. Keskin and A. K. Avci, Appl. Catal., A, 411-412, 114 (2012). https://doi.org/10.1016/j.apcata.2011.10.028
  10. J. Jia, J. Zhou, C. Zhang, Z. Yuan, S. Wang, L. Cao and S. Wang, Appl. Catal., A, 341, 1 (2007).
  11. H-R An, S-H Baek, I-K Park and H-J Ahn, Kor. J. Mater. Res., 23, 469 (2013). https://doi.org/10.3740/MRSK.2013.23.8.469
  12. Y-J Lee, G-H An, M-H Park, C-W Lee, S-H Choi, J-Y Jung, S-J Jo, K-J Lee and H-J Ahn, Kor. J. Mater. Res., 24, 393 (2014). https://doi.org/10.3740/MRSK.2014.24.8.393
  13. J-S Oh, Y-M Kong, B-K Kim and K-A Lee, J. Korean Powder Metall. Inst., 21, 55 (2014). https://doi.org/10.4150/KPMI.2014.21.1.55
  14. D. L. Wu, V. Tschamber, L. Limousy, J. Klein, A. Westermann, B. Azambre, I. Fechete and F. Garin, C. R. Chimie, 17(7-8), 687 (2014). https://doi.org/10.1016/j.crci.2014.04.010
  15. H. Pang, C. Wei, Y. Ma, S. Zhao, G. Li, J. Zhang, J. Chen and S. Li, ChemPlusChem, 78, 546 (2013). https://doi.org/10.1002/cplu.201300015
  16. J. G. McCarty, M. Gusman, D. M. Lowe, D. L. Hildenbrand and K. N. Lau, Catal. Today, 47, 5 (1999). https://doi.org/10.1016/S0920-5861(98)00279-X
  17. R. Chinnasamy, G. M. Rao and R. T. Rajendra kumar, Mater. Sci. Semicond. Process, 31, 709 (2015). https://doi.org/10.1016/j.mssp.2014.12.054
  18. D-W Kim, Polym. Sci. Technol., 13, 101 (2002).
  19. R. Antunes and M. Skrzypkiewicz, Int. J. Hydrogen Energy, 40(12), 4357 (2015). https://doi.org/10.1016/j.ijhydene.2015.01.135

Cited by

  1. Morphology Control of NiO Catalysts on NiCrAl Alloy Foam Using a Hydrothermal Method vol.26, pp.7, 2016, https://doi.org/10.3740/MRSK.2016.26.7.393