http://dx.doi.org/10.7236/JIIBC.2015.15.4.223

JIIBC 2015-4-29

대규모 불균형 수송문제의 간단한 해법

Simple Algorithm for Large-scale Unbalanced Transportation **Problem**

이상은*

Sang-Un Lee*

요 약 본 논문은 대규모 불균형 수송 문제의 최적 해를 구하는 발견적 방법을 제안한다. 대규모 수송문제의 최적 해를 찾는 방법은 일반적인 수송문제의 최적 해를 구하는 TSM을 적용하는데 어려움이 있어, 대부분은 상용화된 선 형계획법 패키지를 활용한다. 그러나 상용화된 선형계획법 패키지가 최적 해를 얻었는지 검증할 방법이 없다. 본 논 문은 공급지와 수요지가 31×15인 대규모 불균형 수송문제에 대해 공급지를 기준으로 수요지가 몇 개인지를 파악하 여 수요지 개수의 오름차순으로 수행하며, 각 수요지 개수에 대해서는 수요지가 1개인 경우 무조건 요구량을 배정하 고, 수요지가 2개 이상인 경우, 공급지 기준의 최소 비용을 선택하고, 수요지 기준으로 비용 오름차순으로 요구량을 충족시키도록 배정하여 초기 해를 구하였다. 해 개선은 보다 큰 비용에 배정된 량을 보다 작은 비용으로 이동 가능한 조건을 만족하면 배정량을 조정하는 방법을 적용하였다. 제안된 방법을 31×15 비용행렬에 적용한 결과, 상용 선형계 획법 패키지의 최적 해를 8.9% 개선하는 효과를 나타내었다.

Abstract As the Transportation Simplex Method of the general transportation problem are inapplicable to the large-scale unbalanced transportation problem, a commercialized linear programming package remains as the only viable means. There is, however, no method made available to verify the optimality of solutions attained by the package. This paper therefore proposes a simple heuristic algorithm to the large-scale unbalanced transportation problem. From a given problem of 31×15 supply and demand areas, the proposed algorithm determines the number of demands areas for each supply area and executes on the latter in the ascending order of each of their corresponding demand areas. Next, given a single corresponding demand area, it supplies the full demand volume and else, it supplies first to an area of minimum associated costs and subsequently to the rest so as to meet the demand to the fullest extent. This initial optimal value is then optimized through an adjustment process whereby costs are minimized as much as possible. When tested on the 31×15cost matrix, the proposed algorithm has obtained an optimal result improved from the commercial linear programming package by 8.9%.

Key Words: Transportation problem, Transportation simplex method, Linear programming, Heuristic method

I. 서 론

수송 문제 (transportation problem, TP)는 다수의 공 급처 $(S_i, i = 1, 2, \dots, m)$ 와 수요처 $(D_i, j = 1, 2, \dots, n)$ 가 존재 하며, 공급량 (s_i) 과 요구량 (d_i) , 공급처에서 수요처로의 수송 단위당 소요 비용 (c_{ij}) 이 다른 경우, 공급량과 요구 량을 모두 만족하도록 수송량 (x_{ij}) 을 할당하였을 때 최 소의 수송비용 합 $(z = \min_{i=1}^{m} \sum_{j=1}^{m} c_{ij} x_{ij})$ 을 찾는 문제이 다. $^{[1-3]}$ 수송 문제는 $\Sigma s_i = \Sigma d_i$ 인 경우를 균형 (balanced)

*정회원, 강릉원주대학교 과학기술대학 멀티미디어공학과 접수일자: 2015년 2월 8일, 수정완료: 2015년 7월 5일

게재확정일자 : 2015년 8월 7일

Received: 8 February, 2015 / Revised: 5 July, 2015 /

Accepted: 7 August, 2015

*Corresponding Author: sulee@gwnu.ac.kr

Dept. of Multimedia Eng., Gangneung-Wonju National University, Korea

수송 문제, $\Sigma s_i \neq \Sigma d_j$ 인 경우를 불균형 (unbalanced) 수송 문제라 한다. $^{[3,4]}$

수송문제는 일반적으로 한 공급지에서 모든 수요지로 도달 가능한 경로를 가진 경우를 취급한다. 그러나 철도 나 송수관 수송의 경우 도달이 불가능한 경로를 가지는 경우가 많이 존재한다. 수송 문제를 해결하는 가장 일반 적인 방법으로 transportation simplex method (TSM)을 적용한다.

TSM은 3단계를 수행한다. [4] 1단계에는 불균형 수송 문제인 경우 수송비용이 0인 가상의 행이나 열을 추가하여 균형 수송문제로 변환시킨다. 2단계에는 northwest corner method (NCM), least-cost method (LCM)과 Vogel's approximation method (VAM) 등을 이용하여 z 값이 최소인 초기 해를 구한다. 3단계에서는 modified distribution method (MODI) 또는 stepping-stone method (SSM) 방법을 적용하여 최적 해를 얻었는지 검증하고 비용을 감소시키도록 수송량을 재조정한다. [4]

또한, Boo^[5]는 선형계획법 (linear programming, LP) 을, Lee^[6]은 k-opt 교환 최적화 (swap optimization) 기법 을 적용하였으며, Lee와 Choi^[7]은 중계수송 문제에 대한 최적 해를 구하는 방법을 제안하였다.

공급지와 수요지가 많은 큰 규모의 수송문제에서 한 공급지에서 모든 수요지로 도달이 불가능한 경로를 다수 포함하고 있는 경우, TSM을 적용하기 어려운 단점이 있 어 대부분은 선형계획법 (linear programming, LP)을 전 산화한 상용 패키지를 사용한다. 그러나 상용화된 선형 계획법 패키지가 최적 해를 얻는지를 검증할 방법이 없다.

본 논문은 대규모의 불균형 수송문제의 최적 해를 구하는 간단한 방법을 제시한다. 제시된 방법을 적용한 결과 상용화된 선형계획법 패키지로 얻은 z 값이 최적 해가 아님을 증명한다.

2장에서는 일반적인 수송 문제의 최적 해를 찾는 TSM과 대규모의 수송문제의 최적 해를 구하는 상용화된 선형계획법 패키지를 고찰해 본다. 3장에서는 대규모의 불균형 수송문제의 최적 해를 찾는 발견적 알고리즘을 제안하고 성능을 검증해본다.

II. 관련 연구와 연구 배경

일반적으로, 수송 문제는 최소 비용 흐름 문제

(minimum cost flow problem, MCFP)의 특별한 경우로 다수의 공급지 (공장)와 수요지 (물류창고)가 존재하고, 공급량, 요구량, 수송 단위당 비용이 다른 값을 가진다. 즉, m개의 공장에서 서로 다른 공급량 s_i 를, n개의 물류 창고에서 서로 다른 요구량 d_j 를 갖고 있다. 또한, 공급처에서 수요처로 수송에 소요되는 단위당 수송비용 c_{ij} 가 존재한다. 이 경우, 주어진 공급량과 요구량 모두를 만족시키도록 수송에 필요한 최소 비용의 합을 찾는 문제로, 각 공급처로부터 물류창고에 수송될 양을 x_{ij} 라 하면, 식 (1)의 최적 해를 찾는다. 여기서 한 가지 제약사항은 모든 x_{ij} 는 양의 정수 값만을 갖아야만 한다. [34]

$$z = \min \sum_{i=1}^{m} \sum_{j=1}^{n} c_{ij} x_{ij}$$
 (1)
S. t.
$$\sum_{j=1}^{n} x_{ij} \le s_{i}, \text{ for } i = 1, 2, \cdots, m$$

$$\sum_{i=1}^{m} x_{ij} \ge d_{i}, \text{ for } j = 1, 2, \cdots, n$$

$$c_{ij} > 0 \text{ for } i, j$$

$$x_{ij} \ge 0 \text{ for all } i, j$$

식 (1)의 조건 $"c_{ij}>0$ for i,j"는 임의의 공급지 S_i 에서 모든 수요지 D_j 로 도달 가능한 경로가 존재하며, 단위수송량당 수송비용 c_i 가 존재함을 의미한다.

수송 문제의 최적 해를 찾는 TSM은 그림 1과 같이 3 단계의 과정을 거쳐 수행된다.^[4]

1단계: 균형수송문제인지를 확인하고 수송표를 만든다. 불균형수송 문제이면 가상의 공급처나 수요처를 도입하여 균형수송문제 로 만든다.

2단계: 초기 해를 구한다. 초기 해를 구하는 기본적인 방법으로 NCM, 발견적 기법으로는 LCM과 VAM이 있다.

3단계 : 최적 해**인지 검토하여 아니면 해를 개선한다.** 해의 검토와 개선 방법은 디딤돌법 (SSM)과 수정배분법 (MODI)이 있다.

그림 1. TSM Fig. 1. TSM

표 1과 표 2는 대한민국의 2030년 이후 수소 운송시스템의 최적화 모델을 상용화된 선형계획법 패키지인 LINGO를 적용해 시스템을 구축한 사례이다. 15 LINGO는 프로그램 용량 제약으로 1개의 시스템을 북부와 남부권역으로 구분하여 최적 해를 구하였다. 수소운송시스템은 공급지가 31개, 수요지가 15개이며, 제주도를 제외한 총공급량은 2450, 수요량은 2371.46이며, 단위는 1,000톤이다. 또한, 수송비용은 파이프라인의 길이 (Km)를 의미한다.

표 1. 북부 수소 수송시스템 최적 해[5]

Table 1. Optimal solution for north hydrogen transportation system

		수요지								n ====	1,1
		서울	인천	경기	강원	대전	충북	충남	· 공급용량 (s_i)	실 공급량	$ d_j $
	인천1	35.18/32.38	11.35/112.1	33.24/55.51	-	-	-	-	200	200	3
	시흥1	30.32/154.13	-	8.80/45.87	-	-	-	-	200	200	2
	안산1	40.52/97.14	27.80/1.27	20.88/101.59	-	-	-	-	200	200	3
	평택	-	-	15.30/50	-	-	-	-	50	50	1
	시흥2	46.52/32.05	-	51.90/17.95	-	-	-	-	50	50	2
	김포	-	-	17.31/50	-	-	-	-	50	50	1
	인천2	25.14/25.39	20.96/20.65	85.20/3.96	-	-	=	-	50	50	3
곳	안산2	38.35/28.74	-	38.21/21.26	-	-	-	-	50	50	2
공 급 지	오산	-	-	25.83/50	-	-	-	-	50	50	1
지	홍천	-	-	120.37/32.13	33.60/17.87	-	-	-	50	50	2
	횡성	-	-	77.21/41.13	17.60/8.87	-	-	-	50	50	2
	춘천	-	-	-	3.00/14.97	-	-	-	50	14.97	1
	당진	101.28/32.21	-	71.70/84.08	-	-	95.53/28.51	39.74/55.2	200	200	4
	보령	-	-	-	-	96.12/67.43	142.00/3.37	42.05/29.2	100	100	3
	태안	134.70/17.29	-	-	-	146.50/11.87	-	13.22/14.19	50	43.35	3
	충주	-	-	-	-	-	39.81/50	-	50	50	1
	서산	-	-	94.83/22.99	-	-	146.60/3.56	60.43/23.45	50	50	3
수요	량 (d _j)	419.33	134.03	576.47	41.71	79.3	85.44	122.04		1458.32	
$ s_i $		8	3	13	3	2	4	4			

표 2. 남부 수소 수송시스템 최적 해^[5]

Table 2. Optimal solution for south hydrogen transportation system

				공급용량	11 777h	1						
		광주	전북	전남	대구	경북	부산	울산	경남	(s_i)	실 공급량	$ d_j $
	순천	81.57/50.92	75.10/2.41	28.35/36.45	-	-	-	-	62.11/10.22	100	100	4
	목포	66.72/20.34	-	27.58/29.66	-	-	-	-	-	50	50	2
	군산	-	24.22/50	-	-	-	-	-	-	50	50	1
	부안	-	32.40/46.61	58.80/5.39	-	-	-	-	-	50	50	2
	여수	-	-	3.00/15.14	-	-	-	-	-	50	15.14	1
	경주	-	-	-	73.52/70.24	14.24/29.76	-	-	-	100	100	2
쓸	포항1	-	-	-	84.86/19.55	3.79/30.45	-	-	-	50	50	2
공 급 지	구미	-	-	-	51.77/14.90	13.48/35.1	-	-	-	50	50	2
'	포항2	-	-	-	77.42/32.14	56.90/17.86	-	-	-	50	50	2
	울산1	-	-	-	-	82.93/8.85	57.19/107.48	5.52/59.45	61.30/24.22	200	200	4
	김해	-	-	-	-	-	9.90/5.24	90/5.24 - 13.47/44.76			50	2
	진해	-	-	-	-	-	-	-	15.23/50	50	50	1
	통영	-	-	-	-	-	-	-	46.11/50	50	1	
	울산2	-	-	-	-	-	58.15/48	-	-	50	48	1
수요령	$\{d_j\}$	71.26	99.02	84.64	136.83	122.02	160.72	59.45	179.20	950	913.14	
$ s_i $		2	3	4	4	5	3	1	5			

표 1과 표 2에 대해서는 식 (2)를 만족하는 z 값을 찾아야 한다.

$$z = \min \sum_{i=1}^{m} \sum_{j=1}^{n} c_{ij} x_{ij}$$
s. t.
$$\sum_{j=1}^{n} x_{ij} \le s_{i}, \text{ for } i = 1, 2, \dots, m$$

$$\sum_{i=1}^{m} x_{ij} \ge d_{i}, \text{ for } j = 1, 2, \dots, n$$

$$\exists c_{ij} = 0 | c_{ij} > 0 \text{ for } i, j$$

$$x_{ij} \ge 0 \text{ for all } i, j$$
(2)

식 (2)의 조건 " \exists $, c_{ij} = 0 | c_{ij} > 0$ for i,j"는 임의의 공급 지 S_i 에서 임의의 수요지 D_j 로 도달 가능한 경로가 존재 하거나 존재 하지 않을 수도 있음을 의미한다. 만약 경로 가 존재하면 단위 수송량당 수송비용 c_{ij} 이 존재하며, 경

로가 존재하지 않으면 수송문제에서는 일반적으로 큰 비용인 "M"으로 표기한다. 그러나 본 논문에서는 편의상표기하지 않는다.

LINGO를 이용하여 구한 표 1의 $z_1=64,699.19$, 표 2는 $z_2=38,471.52$ 로, 전체 데이터의 최적 해 z=103,170.70 Ton/Km이다.

대용량 불균형 수송문제를 상용화된 선형계획법 패키 지로 최적 해를 구할 경우 발생하는 문제점은 다음과 같다.

- (1) 선형계획법 패키지인 LINGO는 메모리 용량 문제로 대용량의 데이터 처리를 하지 못해 2개의 데이터로 분할하여 적용하였다.
- (2) LINGO로 구한 해 z는 최적 해가 되지 못하나 이 를 검증할 방법이 없다.
- (3) LINGO로 구한 최적 해는 특정 공급지의 가동률이

저조하여 효율적이지 못하다. 예로, 춘천은 공급용량이 50,000톤인데 반해 실제 공급량은 14,970톤으로 가동율은 29.94%이며, 여수는 50,000톤 공급용량으로 15,140톤만을 공급하여 가동율은 30.28%를나타내었다.

따라서 대용량의 불균형 수송문제를 해결하기 위해서는 상용화된 선형계획법 패키지를 대체하여 쉽고, 빠르게 최적 해를 얻을 수 있는 알고리즘이 요구된다. 3장에서는 이에 대한 해결책을 제시한다.

Ⅲ. 대규모 불균형 수송문제의 최적 알고리즘

표 1과 표 2의 대규모 수송문제에서 수송비용을 최소 화시키는 문제를 풀기 위해서는 TSM 방법을 적용하기 어려우며, 일반적으로는 상용화된 선형계획법 패키지를 적용한다. 본 절에서는 상용화된 패키지를 적용하지 않 고 직접 최적 해를 구하는 알고리즘을 제안한다.

먼저, 표 1과 표 2를 통합시킨 결과 공급지는 31개, 수 요지는 15개로, 보다 큰 차원 (order)을 가진 공급지를 행 으로, 수요지를 열로 배치하여 31×15의 비용행렬을 얻 는다.

임의의 한 공급지에서 소송할 수 있는 수요지의 개수 $|a_j|$ 를 계산한다. 다음으로 1개의 수요지만 존재하면 무조 건 요구량을 배정해야 한다. 만약 수요지가 2개 이상일 경우에는 행 기준으로 최소비용을 결정하여 열 기준으로 비용 오름차순으로 먼저 배정하고 공급량이 남을 경우, 행 기준으로 다음 최소비용을 선택하여 공급량을 다시 배정한다. 즉, 초기 배정 (초기해)은 다음과 같이 수행한다.

- 1. 공급지 S_i 에 대해 수요지 D_i 의 수 $|d_i|$ 를 계산한다.
- $2.~|d_j|$ = 1인 S_i 에 대해 s_i 에서 d_j 를 만족하도록 x_{ij} 를 배정하고, $s_i \Sigma x_{ij}$ 와 $\Sigma x_{ij} d_j$ 를 계산한다.
- |d_j|≥1인 S_i에 대해 |d 오름차순으로 다음을 반복 수 행한다.
 - (1) 각 행 (S_i) 의 최소 비용 c_{ij} 를 선택한다.
 - (2) 각 열 (D_j) 에 대해 선택된 c_{ij} 오름차순으로 S_i 에 대해 s_i 에서 d_j 를 만족하도록 x_{ij} 를 배정하고, $s_i \Sigma x_{ij}$ 와 $\Sigma x_{ij} d_i$ 를 계산한다.

if
$$\exists$$
 , $(\Sigma x_{ij} - d_j < 0) \cap (s_i - \Sigma x_{ij} > 0)$
if $c_{ij} > 0$ then $\Sigma x_{ij} - d_j < 0$ 행과 s_i
 $-\Sigma x_{ij} > 0$ 열 값들에 대해 c_{ij} 오름
차순으로 s_i 에서 d_j 를 만족하도록
 x_{ij} 배정

else if $c_{ij}=0$ or $\{\phi\}$ then 배정하지 않음 4. if \exists , $(\Sigma x_{ij}-d_j<0)\cap(s_i-\Sigma x_{ij}>0)$ then $\Sigma x_{ij}-d_j=0$ 이 되도록 배정량 조정.

초기 해 개선을 위한 배정조정은 다음과 같이 수행한다.

5. 임의의 수요지 D_j 의 비용 $c_{ij}>c_{ik}$ 의 배정량이 $x_{ij}>0,x_{ik}\geq 0$ 일 때, c_{ij},c_{ik} 의 열에서 c_{ij},c_{ik} 의 배정량 $x_{lj}\geq 0,x_{lk}>0$ 을 모두 찾는다.

$$\begin{split} \text{if} & & \exists \,, (c_{ij} + c_{lk}) > (c_{ik} + c_{lj}) \; \text{ then} \\ & x_{ij} = x_{ij} - _{\min} (x_{ij}, x_{lk}), x_{ik} = x_{ik} + _{\min} (x_{ij} + x_{lk}), \\ & x_{lk} = x_{lk} - _{\min} (x_{ij}, x_{lk}), x_{lj} = x_{lj} + _{\min} (x_{ij}, x_{lk}) \end{split}$$
 end

초기배정 (초기해)의 Step $1 \sim$ Step 3을 수행한 결과는 표 3에 제시되어 있다.

Step 3 수행 결과, $s_i - \Sigma x_{ij} > 0$ 으로 공급량이 남은 공급지는 경주 (5.98), 서산 (14.56), 당진 (70.17), 울산1 (77.98)이며, $\Sigma x_{ij} - d_j < 0$ 으로 공급량이 수요량을 충족시키지 못하는 도시는 대전 (-51.34), 광주 (-35.1)와 대구 (-8.85)가 발생하였다.

Step 4에서 $\Sigma x_{ij} - d_j = 0$ 이 수요량을 충족시키도록 조정하는 방법은 표 4와 같이 수행되었으며, 수행 결과는 표 5에 제시하였다.

Step 5를 수행하기 위해 표 5의 각 행에 대해 수요지 D_j 의 비용 $c_{ij}>c_{ik}$ 의 배정량 $x_{ij}>0,x_{ik}\geq 0$ 을 선택하고, c_{ij},c_{ik} 열에서 c_{ij},c_{lk} 배정량 $x_{lj}\geq 0,x_{lk}>0$ 를 모두 찾아 $(c_{ij}+c_{lk})-(c_{ik}+c_{lj})>0$ 를 선택한다. 선택된 $(c_{ij}+c_{lk})-(c_{ik}+c_{lj})>0$ 에 대해 $x_{ij}=x_{ij}-\min_{\min}(x_{ij},x_{lk}),x_{lk}=x_{lk}+\min_{\min}(x_{ij},x_{lk}),x_{lk}=x_{lk}-\min_{\min}(x_{ij},x_{lk}),x_{lj}=x_{lj}+\min_{\min}(x_{ij},x_{lk})$ 로 조정한다. 이들 대상은 당진-서울 (101.28/129.83), 태안-대전(146.50/50.0), 서산-충북(146.60/35.44), 순천-광주(81.57/55.9), 경주-대구(73.52/77.98)로 표 6과 같이 수행되었으며, 결과는 표 7에 제시되어 있다.

표 3. 수소 수송시스템 초기해

Table 3. Initial solution for hydrogen transportation system (HTS)

$s_i - \Sigma x_{ij}$	000			13.36 0.98 77.98 0.50.00			000			65.97 123.53 50 27.96 0 50			0000 14.56			70.17 140.55 20.8			70.17 79.83 0		
8.	282222222 20202222222222222222222222222			8888888888888			15.36 0.98 77.98 50.00			2002			65.97 123.53 50 27.96 50			888			70.17 140.55 20.8		
% 4°	- - - - - 13.23/50 46.11/50	179.20	-79.20		79.20	-79.20	1 1 1 1	79.20	-79.20		79.20	-79.20		79.20	-79.20	61.30 62.11/79.20	79.20	0	61.30 62.11/79.20	0	0
뺙		59.45	-59.45		59.45	-59.45	1 1 1 1	59.45	-59.45		59.45	-59.45		59.45	-59.45	5.52/59.45	59.45	0	5.52/59.45	0	0
부산	- - - - - - - - - - - - - - - - - - -	160.72	-110.72		110.72	-60.72		60.72	-60.72		60.72	-60.72		60.72	-60.72	57.19	60.72	-60.72	57.19/60.72	60.72	0
카 汉º		122.02	-122.02	- - - - 14. 24/22.02 3. 78/50 13. 48/50 56. 90/0.0	122.02	0	_ 	0	0		0		1 1 1 1 1	0	0	82.93	0		82.93	0	0
かって		136.83	-136.83	73.52 84.86 51.77	136.83	-136.83	_ 73.52/77.98 77.42/50.0	136.83	-8.82		8.85	-8.83		8.85	-8.82		8.85	-8.83		8.85	-8.85
なるよ	3.00/50	84.64	-34.64	27.58/34.64 58.80 	34.64	0	27.58/34.64 58.80 - -	0	0		0	0		0	0	28.35	0	0	_ _ 28.35	0	0
みず	24.22/50	99.03	-49.02	32.40/49.02	49.02	0	32.40/49.02	0	0		0	0	1111	0	0	75.10	0	0	75.10	0	0
於		71.26	-71.26	66.72	71.26	-71.26	66.72/15.36	71.26	-88.9		55.9	-83.9	1111	55.9	-88.9	_ _ 81.57	55.9	-83.9	-81.57/20.8	55.9	-38.1
**		122.04	-122.04		122.04	-122.04	1 1 1 1	122.04	-122.04	- - 42.05/72.04 13.22/50.0 60.43/0.0	122.04	0	- - 42.05/72.04 60.43/0.0	0	0	39.74	0	0	39.74	0	0
파다 KTO	39.81/50	85.44	-33.44		35.44	-33.44	1111	35.44	-33.44	- - 142.00 146.60	35.44	-33.44	- - 142.00 146.60/33.44	35.44	0	95.53	0	0	95.53	0	0
ㅠ		79.3	-79.3		79.3	-79.3	1 1 1 1	79.3	-79.3	- - 96.12 146.50	79.3	-79.3	- - 96.12/27.96 -	79.3	-51.34		51.34	-51.34	1 1 1	51.34	-51.34
% %	3.00/41.71	41.71	0		0	0		0	0		0	0	1 1 1 1 1	0	0	1 1 1	0	0	1 1 1	0	0
بر مع	15.30/50 17.31/50 25.83/50 - - - - - - - - - - - - - - - - - - -	576.47	-426.47	8.80/200 51.90 38.21/50 120.37/50 77.21/50 -	426.47	-76.47	1 1 1 1	76.47	-76.47	33.24 30.88/76.47 85.20 - 94.83	76.47	0	33.24 20.88/76.47 85.20 -	0	0	71.70	0	0	71.70	0	0
양상		134.03	-134.03		134.03	-134.03	1 1 1 1	134.03	-134.03	03	134.03		11.35/134.03 27.80 20.96/0.0	0	0	1 1 1	0	0	1 1 1	0	0
수		419.33	-419.33	30.32 46.52/50 38.35 - - - - - - - - - - - - - - - - - - -	419.33	-369.33	1 1 1 1	369.33	-369.33	35.18 40.52 25.14 - 134.70	369.33		35.18/65.97 40.52/123.53 25.14/50 -	369.33	-129.83	101.28/129.83	129.83	0	101.28/129.83	0	0
	Bound Whylotys Fumoling 即 로 文字 *** ** ** ** ** ** ** ** ** ** ** ** *	d_j	$\Sigma x_{ij} - d_j$	소스 악동 하라라 하지 다 로	d_j	$\Sigma x_{ij} - d_j$	로 로 로 로 로 로 로 로 로 こ こ こ こ こ こ こ こ こ こ こ	d_j	$\sum x_{ij} - d_j$	마아이퍼퍼 첫덕왕중중	d_j	$\Sigma x_{ij} - d_j$	라마아 참삼淡sso	d_j	$\sum x_{ij} - d_j$	다 하십차	d_j	ł,	라 하건화	d_j	$\sum x_{ij} - d_j$
d_j	-			22								23						4	4		

표 4. 공급-수요 균형 조정

Table 4. Adjust of supply and demand balance

순번	네트워크	$\Sigma x_{ij} - d_j < 0$	$s_i - \Sigma x_{ij} > 0$		x_{ij}	
2.2	-1117	(-)	(+)	(+)	(-)	(+)
	대상	대전	당진	태안-대전	태안-충남	당진-충남
1	초기 배정	-51.34	+70.17	146.50/0.0	13.22/50.0	39.74/0.0
	배정 조정	-1.34	+20.17	146.50/50.0	13.22/0.0	39.74/50.0
	대상	대전	당진	보령-대전	보령-충남	당진-충남
2	초기 배정	- 1.34	+20.17	96.12/27.96	42.05/72.04	39.74/50.0
	배정 조정	0.0	+18.83	96.12/29.30	42.05/70.70	39.74/51.34
	대상	광주	울산1	순천-광주	순천-경남	울산1-경남
3	초기 배정	- <mark>35.1</mark>	79.83	81.57/20.8	62.11/79.20	61.30/0.0
	배정 조정	0.0	44.73	81.57/55.9	62.11/44.1	61.30/35.1
	대상	대구	울산1	구미-대구	구미-경북	울산1-경북
4	초기 배정	- <mark>8.85</mark>	44.73	51.77/0.0	13.48/50.0	82.93/0.0
	배정 조정	0.0	35.88	51.77/8.85	13.48/41.15	82.93/8.85

표 5. 수소 수송시스템 초기 배정 조정 결과 Table 5. Adjusting result of initial assignment for HTS

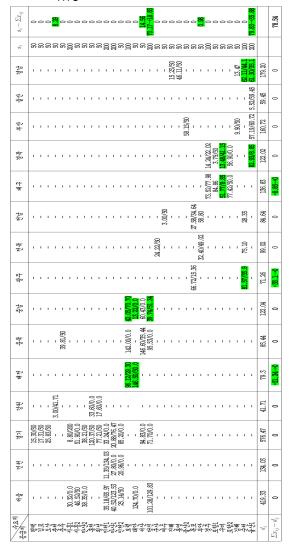


표 6. 배정량 조정

Table 6 Adjust of assignment quantity

iable 6. F	ajust o	t assignme	ent q	uanti	ιy					
c (-)	c,,(+)	$(x_{lk} > 0)$	$,(c_{ij}+c_{lk}$	$(c_{ik} - c_{ik} - $	$+c_{lj}) > 0$	0				
$c_{ij}(-)$	$c_{ik}(\pm)$	$c_{lk}(-)$			$c_{lj}(+)$					
		안산1-경기 (20.8	3/76.47)	안산1-사	울 (40.5	2/123.53)				
		(101.28+2	20.88)-(7	1.70+40.	52)=9.94	Į.				
당진-서울	당진-경기	안산2-경기 (38.2	21/50.0)	안산2-	서울 (38.	.35/0.0)				
(101.28/129.83)	(71.70/0.0)	(101.28+3	8.31)-(7	1.70+38.3	35)=29.4	4				
		시흥1-경기 (8.80	/200.0)	시흥1-	서울 (30.	.32/0.0)				
		(101.28+	8.80)-(7	1.70+30.3	32)=8.06					
	태안-충남	보령-충남 (42.05	/70.70)	보령-다	H전 (96.12	2/29.30)				
(146.50/50.0)	(13.22/0.0)	(146.50+4	2.05)-(1	3.22+96.	12)=79.2	1				
		당진-충남 (39.74	/51.34)	당진	충북 (95.5	53/0.0)				
서산-충북	서산-충남	(146.60+3	9.74)-(6	0.43+95.	53)=30.28	В				
(146.60/35.44)	(60.43/0.0)	보령-충남 (42.05	(20.70)	보령-충	충북 (142.	.00/0.0)				
		(146.60+42.05)-(60.43+142.00)=-13.88								
 순천-광주	순천-전남	목포-전남 (27.58	목포-전남 (27.58/34.64) 목포-광주 (66.72/15.36)							
(81.57/55.90)	(28.35/0.0)	(81.57+27.58)-(28.35+66.72)=-14.08								
	경주-경북	구미-경북 (13.48	구미-፣	구미-대구 (51.77/8.85)						
(73.52/77.98)	(14.24/22.02)	(73.52+13	3.48)-(14	.24+51.7	7)=20.99)				
		1 ,		,						
c_{ij}/x_{ij} $(-)$	c_{ik}/x_{ik} $(+)$	c_{lk}/x_{lk} $(-)$		(x_{lj})	배정 조정량	비용 감소				
당진-서울	당잔-경기	안산2-경기	안산2-서울							
(101.28/129.83→ 79.83)	(71.70/0.0 →50.0)	(38.21/50.0 0.0)	(38.35/0.0 50.0) 안난1-서울		50.0	1472.00				
당진-서울	50.07 당진-경기	안선1-경기								
(101.28/79.83	(71.70/50.0	(20.88/76.47	(40.52/123.53		76,47	760.11				
-8.36)	→126.47)	0.0)	→200.0)							
당진-서울	당진-경기	시휘-경기		-서울	0.00					
(101.28/3.36 —0.0)	(71.70/126.47 →129.83)	(8.80/200.0 →196.64)		12/0.0 1.36)	3.36	27.08				
태인-대전	태안-충남	보령-충남		-대전						
(146.50/50.0	(13.22/0.0	(42.05/70.70		/29.30	50	3960.50				
→0.0)	→50.0)	→20.70)		9.30)						
선산 충북	서산-충남	당진-충남		충북	05.44					
(146.60/35.44 →0.0)	(60.43/0.0 →35.44)	(39.74/51.34 →15.90)		3/0.0 5.44)	35.44	1076.67				
수천-광주		목포-전남								
(81.57/55.90	(28.35/0.0	(27.58/34.64	목포-광주 (66.72/15.36		34.64	487.73				
→21.26)	→34.64)	-0.0)	_−5	(0.0)						
경주대구	경주·경북	구마-경북		대구	41.15					
(73.52/77.98 →36.83)	(14.24/22.02 -63.17)	(13.48/41.15 -0.0)		7/8.85 (0.0)	41.15	863.74				
<i>,</i>	W.117	· 利		~~//	1	8647.83				
		4.11				JU21 .00				

Step 5를 수행한 결과 z=93,969.75를 얻어 상용화된 선형계획법 패키지인 LINGO로 구한 z=103,170.70에 대 해 9,200.96 Ton/Km가 작은 값으로 8.9%의 해 개선 효과 를 얻었다. 또한, 공급용량이 실 공급량을 초과하는 공급 지를 분석한 결과 표 8과 같이 가동율을 향상시키는 결과 도 얻을 수 있었다.

Ⅳ. 결론 및 향후 연구과제

본 논문에서는 대규모 불균형 수송문제에 대해 선형 계획법 상용 패키지를 적용하였을 경우 최적 해를 구하 지 못하는 단점을 보완한 알고리즘을 제안하였다.

제안된 알고리즘은 먼저, 공급지의 개수를 결정하고, 공급지가 1개인 수요지는 무조건 요구량을 배정하며, 공 급지가 2개 이상인 수요지는 공급지 측면에서의 최소비

표 7. 수소 수송시스템 최적 해 Table 7. Optimal solution for HTS

$s_i - \sum x_{ij}$	000 8. 8. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5.	88.88
s_i	දියයයයදියයයයයයයදුම් දින්දියියයයදුම් සහ සහ දින්දියයයයදුම් සහ සහ දින්දිය දින්දියයි. මේදියයයිදුම් දින්දියයිදුම් දින්දියයිදුම් දින්දියයිදුම් දින්දියයිදුම් දින්දියයිදුම් දින්දියයිදුම් දින්දියයිදුම්	200
TP RO	6.11/44.10	8 5
바산		5.52/59.45
中令	58.15/50 	57.19/60.72
파 汉º	24/63.17 	32.93/ 8.85
ተ	27 27 28 20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	- 28 921
th th	3.00/50.00	- 78
水, 朴	74.22/50.00 3.00/50 32.40/49.02 55.80/0	- 00
K - 라º	66.72.50.00	36 14
₹p •	42, 06/20,70 13, 22/50,00 14, 15/20,44 39, 74/15,30	70 001
শৃr শৃ	39.81/50.00	- 88 44
판	96.12/79.30 146.13/79.30	7 07
3.8	3.30/41.71 71.60/00 71.60/00 71.60/00	- 12 14
<u>ج</u>	115.30/95.00 21.737/95.00 21.737/95.00 21.737/95.00 21.20/37/96.00 21.20/37/96.00 21.20/37/96.00 21.20/37/96.00 21.20/37/96.00 21.20/37/96.00 21.20/37/96.00 21.20/37/96.00 21.20/37/96.00	- 276 47
상	0.00	134 03
oļm	39.32/ 3.38 46.52/ 93.03 39.35/ 93.03 39.36/ 93.03 40.52/200.03 40.52/200.03 134.70/ 0.00	- 22 017
장금지 나쬬시	BOLD ON NO. C. C. STANGES STANGES TO THE THE TOTAL THE THE THE STANGES TO THE	출산

표 8. 공급용량이 실 공급량을 초과하는 공급지 가동율 비교 Table 8. Compare with operating rate for the source with the capacity is larger than actual supply

공급지		LINGO		제안 알고리즘					
9 H A	공급용량	실 공급량	가동율	공급용량	실 공급량	가동율			
춘천	50,000 톤	14,970 톤	29.94%	50,000 톤	41,710 톤	83.42%			
태안	50,000 톤	43,350 톤	86.70%	50,000 톤	50,000 톤	100.00%			
여수	50,000 톤	15,140 톤	30.28%	50,000 톤	50,000 톤	100.00%			
울산2	50,000 톤	48,000 톤	96.00%	50,000 톤	50,000 톤	100.00%			
서산	50,000 톤	50,000 톤	100.00%	50,000 톤	35,440 톤	70.88%			
당진	200,000 톤	200,000 톤	100.00%	200,000 톤	181,170 톤	90.59%			
부안	50,000 톤	50,000 톤	100.00%	50,000 톤	49,020 톤	98.04%			
울산1	200,000 톤	200,000 톤	100.00%	200,000 톤	164,120 톤	82.06%			
	평균 가동	<u></u>	80.37%	-	-	90.62%			

용을 선택하고, 수요지 측면에서 선택된 비용의 오름차 순으로 수송량을 배정하는 방법을 택하였다. 만약, 공급 량과 요구량을 만족하지 못하면 다시 최소 비용을 선택 하여 위와 같은 방법으로 수송량을 배정한다. 다음으로, 초기해의 개선은 보다 큰 비용에 배정된 량을 보다 작은 비용으로 이동시킬 수 있는 조건을 만족하면 이동시키는 방법을 적용하였다.

제안된 알고리즘은 초기 해를 구하는 과정과 해 개선 과정이 간단하여 전산화된 상용 패키지를 적용하지 않아 도 되며, 선형계획법보다 나은 최적 해를 구하는 장점을 갖고 있다.

References

- [1] Wikipedia, "Transportation Problem," http://en. wikipedia.org/wiki/Transportation_problem, Wikimedia Foundation Inc., 2014.
- [2] W. L. Winston, J. B. Goldberg, and M. Venkataramanan, "Introduction to Mathematical Programming: Operations Research," Vol. 1, 4th edition, Duxbury Pr, 2003, ISBN-10: 0534359647.
- [3] L. Ntaimo, "Transportation and Assignment Problems," http://ie.tamu.edu/INEN420_2005Spring/ SLIDES/Chapter 7.pdf, 2005.
- [4] J. K. Khang, "Operations Research," http:// secom.hanbat.ac.kr/or/ch06/right04.html, Hanbat University, 2006.
- [5] K. J. Boo, "Hydrogen Economy Ages, How to Supply Hydrogen?," Energy Journal, http://www.

- ejnews.co.kr/news/article View.html, 2008.
- [6] S. U. Lee, "Optimal Solution for Transportation Problems," Journal of IIBC, Vol. 13, No. 2, pp. 93–102, Apr. 2013, doi: 10.7236/JIIBC.2013.13.2.93.
- [7] S. U. Lee and M. B. Choi, "The Optimal Algorithm for Transshipment Problem," Journal of IIBC, Vol. 13, No. 1, pp. 153–162, Feb. 2013, doi:10.7236/JIIBC.2013. 13.1.153.

저자 소개

이 상 운(정회원)

- 1987년 : 한국항공대학교 항공전자공 학과 (학사)
- 1997년 : 경상대학교 컴퓨터과학과 (석사)
- 2001년 : 경상대학교 컴퓨터과학과 (박사)
- 2003년 : 강원도립대학 컴퓨터응용과 전임강사
- 2004년 ~ 2007년 2월 : 국립 원주대학 여성교양과 조교수
- 2007년 3월 ~ 2015년 3월 : 강릉원주대학교 멀티미디어공학과 부교수
- 2015년 4월 ~ 현재 : 강릉원주대학교 멀티미디어공학과 정교수
- 관심분야: 소프트웨어 프로젝트 관리, 개발 방법론, 분석과 설계 방법론, 시험 및 품질보증, 소프트웨어 신뢰성, 그래프 알고리즘
- e-mail: sulee@gwnu.ac.kr

[※] 본 연구는 미래창조과학부 및 정보통신기술진흥센터의 방송통신정책연구센터(CPRC) 지원사업(IITP-2015-R0880-15-1007)의 연구결과로 수행되었음.