목표-지향 추적 기법을 이용한 궤적 복원 방법
오선호*, 정순기**

Trajectory Recovery Using Goal-directed Tracking
Seon Ho Oh*, Soon Ki Jung**

ABSTRACT

Obtaining the complete trajectory of the object is a very important task in computer vision applications, such as video surveillance. Previous studies to recover the trajectory between two disconnected trajectory segments, however, do not take into account the object’s motion characteristics and uncertainty of trajectory segments. In this paper, we present a novel approach to recover the trajectory between two disjoint but associated trajectory segments, called goal-directed tracking. To incorporate the object’s motion characteristics and uncertainty, the goal-directed state equation is first introduced. Then the goal-directed tracking framework is constructed by integrating the equation to the object tracking and trajectory linking process pipeline. Evaluation on challenging dataset demonstrates that proposed method can accurately recover the missing trajectory between two disconnected trajectory segments as well as appropriately constrain a motion of the object to its goal (or the target state) with uncertainty.

Key words: Goal-directed Tracking, Trajectory Interpolation, Trajectory Extrapolation, Trajectory Recovery

1. 서 론

연속된 영상으로부터 물체의 위치를 추정하는 궤적 추적 기술은 컴퓨터 비전 분야에서 매우 활발하게 연구되고 있는 주제이다. 이는 인간-컴퓨터 상호작용, 증강현실, 영상 보안, 재산 검출 및 인식 등의 다양한 분야에서 활용되고 있다. 최근 수십 년간의 궤적 추적 기술의 발전[1-4]은 정확하면서도 강인한 궤적 추적을 가능하게 하였다. 하지만 객체의 급격한 의행적 변화, 복잡한 배경, 모션 불리, 대상 객체의 일부 혹은 전체적인 가려짐, 조명 변화, 객체의 복잡한 일 또는 급격한 움직임 등으로 인해 궤적의 완전한 궤적을 얻기에는 여전히 어려움이 있다. 결과적으로 이러한 상황에서의 궤적 추적은 불완전한 궤적(complete trajectory)을 얻기에는 여전히 어려움이 있다. 결과적으로 이러한 상황에서의 궤적 추적은 불완전한 궤적(incomplete trajectory), 즉, 끊어진 궤적 구간(disconnected trajectory segments)을 생성한다.

이러한 문제를 해결하기 위하여 끊어진 궤적 구간 간의 연관 관계(association)를 파악하고, 이들을 하나로 연결(linking)하는 다양한 연구[5-14]가 진행되었다. 본 연구의 목표는 이벤트 분석을 포함한 영상 감시(visual surveillance) 분야에서 중요한 단서로 활용될 수 있는 궤적 추적을 전문적으로 연구하는 연구는 활발하게 이루어지고 있다.

* Corresponding Author: Soon Ki Jung, Address: (702-701) Daechak-ro 80, Buk-gu, Daegu, Korea, TEL: +82-53-950-5353, FAX: +82-53-957-4816, E-mail: skjung@knu.ac.kr

Receipt date: Feb. 14, 2015, Revision date: Mar. 27, 2015
Approval date: Apr. 6, 2015

** School of Computer Science and Engineering, College of IT, Kyungpook National University (E-mail: shoh@vr.knu.ac.kr)

* This work is supported by the World Class 300 project, Development of HD video/network-based video surveillance system(100-03570), funded by the Ministry of Trade, Industry, and Energy (MOTIE, Korea) and partially supported by Kyungpook National University Research Fund, 2014.
지지 않았다[15-16]. 한편으로, 3차원 시·공간 비디오 풀롤에서의 계측 구간 사이의 보간(interpolation), 또는 곡선 근사(curve fitting)를 위한 방법은 끝이진 두 개의 계측 구간을 부드럽게 연결하는 과정을 생성할 수는 있으나, 객체의 움직임에 대한 특성을 내과 측정값에 대한 불확실성을 다룰 수 없는 문제가 있다. 그러므로 이러한 계측 요소를 만족하면서도 효과적인 계측 복원 기법의 개발이 필요하다.

본 논문에서는 대상 객체의 운동 특성을 나타내는 초기 상태와 도달하고자 하는 목표 상태, 그리고 이에 대한 불확실성을 반영한 목표-지향 상태 방정식 (goal-directed state equation)을 정의한다. 그리고 객체 추적과 계측 연관 기법의 목표-지향 상태 방정식을 결합한 목표-지향 추적(Goal-directed Tracking, GDT) 방법을 제안한다. 제안된 방법은 끝이진 전후 계측 구간이 주어질 때, 대상 객체의 운동에 대한 특성을뿐만 아니라 계측 구간에 대한 측정값의 불확실성 또한 반영할 수 있으며, 기존의 보간이나 곡선 근사 기법에 비해 끝이진 계측 구간을 보다 정확하게 복원할 수 있다. 실험 결과는 제안한 방법이 기존의 방법에 비해 성능이 우수함을 보인다.

본 논문의 구성은 다음과 같다. 먼저 2장에서는 끝이진 계측 구간의 연결 및 이동 사이의 계측 복원에 대한 관련 연구를 살펴본다. 다음으로 3장에서는 목표-지향 추적에 대한 상태·공간 구조로부터 목표-지향 상태 방정식을 도출하고, 이를 기존의 객체 추적 및 계측 연관 기법과 연계하여 목표-지향 객체 추적 방법을 제시한다. 그리고 4장에서는 제안한 목표-지향 추적 기법의 성능을 평가하고, 마지막으로 5장 결론 및 향후 연구에 대해서 기술한다.

2. 관련 연구

움직임에 대한 추정에서 일반적으로 사용되는 칼만 필터(Kalman filter)는 과거의 상태에 대한 정보를 이용하여 현재 상태를 추정함으로써 이상(extrapolation)을 수행할 수 있으나, 목표점과 이에 대한 불확실성을 반영할 수 없다. 파티클 필터(Particle filter)의 경우에도 이러한 상황에서는 적용할 수 없다. Srinivasan[17]은 목표 지정으로 납쟁기 동작(reaching arm movement)을 기술하기 위하여 상태-공간 분석을 통한 선형 상태 방정식을 제안하였는데, 이 방법의 핵심은 목표와 경로가 서로 독립적이
지 않다는 것이다. 이 점에 착안하여 본 논문에서는 목표-지향 상태 방정식을 이용한 목표-지향 추적 기법을 제시하고자 한다.

3. 목표-지향 추적 기법

이 장에서는 먼저 목표-지향 운동학에서의 상태공간 분석을 통해 목표 상태에 대한 측정값과 불확실성을 어떻게 반영할 수 있는지 살펴보고, 다음으로 목표 상태에 대한 측정값과 불확실성을 주어질 때의 선행 운동학에 대한 목표-지향 상태 방정식을 유도한다. 마지막으로 선행 목표-지향 상태 방정식을 제계 및 연관 기법과 결합하여 끌어내는 제작 사이의 경로를 볼기 위한 프레임워크_Framework을 제시한다.

3.1 목표-지향 운동학의 상태-공간 분석

Srinivasan [17]은 목표와 경로가 서로 독립적이지 않는다는 전제를 기반으로 초기 상태와 목표 지점, 그리고 도달 시간 T가 주어질 때, 목표-지향 운동학에 대한 상태-공간 분석을 통한 선행 상태 방정식을 제시하고, 이를 이용하여 시각적으로부터 목표 지점까지의 궤적 동작_reaching arm movement을 가능하였다. 이들은 칼마 필터와 유사하게 가우스-마르코프 과정(Gauss-Markov process)에 기반을 둔 다음과 같은 이산-시간(discrete-time) 선행 상태 방정식을 고려하였다.

\[
x_t = A_x x_{t-1} + w_t.
\]

\(x_t\)는 시간\(t\)에서의 상태 벡터이며,\(A_x\)는 해당 시간에서 이전 상태에 기반을 둔 상태 전이 행렬(전형행렬이 존재하는 것으로 가정), 그리고\(w_t\)는\(E[w_t w_t^T] = Q_d\)를 공분산행렬로 가지는 다변수 정규 분포(multivariate normal distribution)를 반영한다. 경로는\(X = \{x_0, \cdots, x_T\}\)으로 정의되며,\(x_0\)는 초기 상태이다. 그리고 목표 상태 벡터\(x_T\)와 측정값\(y_T\) 사이의 관계는 다음과 같다고 가정하였다.

\[
y_T = x_T + v_T.
\]

\(v_T\)는 목표 지점의 불확실성을 나타내는 공분산행렬\(H_T\)를 가지는 다변수 정규 분포 값의 변수이다. 그러면 도달-상태 방정식(reach state equation)[17]은 다음과 같은 형식으로 나타낼 수 있다.

\[
x_t = A_x x_{t-1} + u_t + e_t.
\]

\(u_t\)는\(y_T\)와\(x_{t-1}\)에 대한\(w_t\)의 조건부 기대값\(E[w_t|x_{t-1}, y_T]\)을 나타내는 유도장(disturbance term)이며,\(e_t\)는\(x_T\)가\(y_T\)와\(x_{t-1}\)에 대한\(w_t\)의 조건부 공분산\(\text{cov}(w_t|x_{t-1}, y_T)\)을 공분산으로 하는 다변수 정규 분포 값의 변수이다.

3.2 목표-지향 상태 방정식

이 장에서는 앞서 3.1에서 기술한 목표 상태에 대한 측정값과 불확실성을 반영한 상태 방정식을 해당 시간에서의 측정 행렬(measurement matrix)\(H_T\)가 주어질 때 확장하여 목표-지향 상태 방정식을 정의한다. 측정 행렬\(H_T\)가 주어질 때, 상태 벡터\(x_T\)에 대한 목표 지점의 측정값\(y_T\)는 아래와 같다.

\[
y_T = H_T x_T + v_T.
\]

\(v_t\)는\(t \leq i \leq T\)일 때,\(x_{t-1}, y_t, v_t\) 그리고\(w_t\)에 대해서 정리하면 다음과 같이 나타낼 수 있다. 석의 유도에 대한 자세한 내용은 부록 1을 참조하자.

\[
y_T = H_T \phi(T; t-1) x_{t-1} + H_T \sum_{i=t}^{T} \phi(T; i) w_i + v_T.
\]

\(\phi(t,s)\)는 상태 벡터\(x_t\)를\(x_s\)로 사상하는 새로운 상태 간 과정이며 아래와 같이 정의된다.

\[
\phi(t,s) = \begin{cases} \prod_{k=s}^{t-1} A_x^{s-k} & t < s, \\ 1 & t = s. \end{cases}
\]

그런데\(u_t, v_t, w_t\)는\(y_T\)와\(x_{t-1}\)에 대하여 결합 정규 분포(jointly Gaussian distribution)를 따를 때\(w_t|x_{t-1}, y_T\)에 대한 기대값과 공분산으로 표현할 수 있으므로, 선형최소제곱오차 추정(linear least squares error estimate)에 의해 기대값\(u_t\)와 오차 공분산(error covariance)\(v_t\)는 각각 아래와 같이 나타낼 수 있다.

\[
u_t = E[w_t|x_{t-1}, y_T] = Q_0 \phi^T(T; t) H_T^{-1}
\]

\[
	\times \{H_T + H_T \sum_{i=t}^{T} \phi(T; i) Q_0 \phi^T(T; i) H_T^{-1} - (y_T - H_T \phi(T; t-1) x_{t-1}) \},
\]

\[
ev_t = \text{cov}(w_t|x_{t-1}, y_T) = Q_0 - Q_0 \phi^T(T; t) H_T^{-1}
\]

\[
	\times \{H_T + H_T \sum_{i=t}^{T} \phi(T; i) Q_0 \phi^T(T; i) H_T^{-1} - H_T \phi(T; t-1) Q_0 \phi^T(T; t-1) H_T^{-1} \}.
\]
조기 상태 x_0도 마찬가지로 내정값 y_T에 대한 조건확률 분포를 따르므로, 선형회귀모델에서 추정해 무작위 3) 다음과 같은 조건부 공분산과 기대 값을 얻을 수 있다.

$$m_0 = E[x_0] = \text{cov}(x_0, y_T)^{-1} \text{cov}(y_T, x_0).$$

모기를 이용하여 초기 상태 x_0에서의 기대값과 공분산을 나타낸다.

위의 식(4)-(10)을 이용하여 목적에 대한 추정값 y_T와 도달 시간 T가 주어질 때, 초기 상태 x_0로부터 목표 점검값의 값을 계산하기 위한 상태 방정식을 얻을 수 있으며, 이를 목표-지향 상태 방정식으로 정의한다.

한편, 추정 행렬 H_T는 반드시 역행렬이 존재할 필요는 없지만, 만약 역행렬이 존재할 경우에는 식 (7)과 (8)을 다음과 같이 나타낼 수 있다.

$$E[x_0 | y_T] = \left(H_T^{-1} + P_T^{-1}(0, T) \right)^{-1} \left(m_0 + \text{cov}(x_0, y_T) \right) \phi(t, T) Q_T^{-1}.$$

또한, H_T의 역행렬이 존재하지 않더라도 $H_T H_T^T$의 역행렬이 존재할 경우, 의사역행렬(pseudo inverse)을 이용하면 아래와 같은 식을 얻는다.

$$E[x_0 | y_T] = \left(H_T^{-1} + P_T^{-1}(0, T) \right)^{-1} \left(m_0 + \text{cov}(x_0, y_T) \right) \phi(t, T) Q_T^{-1}.$$

3.3 목표-지향 객체 추적 프레임워크

이 절에서는 3.2절에서 도출한 응용에 대한 목표-지향 상태 방정식을 객체 추적 및 연관 기법과 결합하여, 하나의 통합된 프레임워크를 제시하고자 한다. Fig. 1은 이러한 목표-지향 객체 추적 프레임워크의 전체적인 모습을 나타낸다.

먼저, 연속된 영상이 입력으로 주어지면 객체 추적을 수행한다. 그리고 구해진 끝점의 객체간의 데이터 연관의 데이터의 연관성을 생성한다. 마지막으로 각각의 위치값의 끝점의 연관점의 연관값을 통해 각각의 위치값들의 추적을 도달하였다.

목표-지향 경로 추적을 위한 목표-지향 상태 방정식의 매개 변수들은 다음과 같이 정의된다. 전후 객체간 P_T와 P_T가 주어질 때, 초기 상태 x_0는 F_T의 마지막 값 x_T에서의 상태이며, 목표점 y_T는 P_T에서의 시작점 P_T^0로 정의한다. 초기 상태 벡터 x_0는 칼만 필터 또는 확장 칼만 필터 등의 상태 추정(state estimation) 기법을 이용하여 얻을 수 있다. 초기 상태 x_0에서 목표점 y_T까지의 도달 시간은 T_T와 T_T의 시간차로 정의된다. 그리고 목표점 y_T에서의 불확실성 H_T는 목표 상태 벡터 x_T는 식 (2) 또는 (4)에서의 다변수 정규 분포 임을 벡터 x_T에 대한 공분산 행렬로 정의된다.

4. 실험 결과

제안한 방법의 성능을 평가하기 위해서 PETS 2009 데이터 세트의 S2 L1 시나리오를 사용하였다. 영상의 해상도는 768 x 576, 속도는 7 fps, 장면은 765 프레임이며, 총 19개의 객체에 대하여 실험을 conducts.

Fig. 1. Flowchart for goal-directed tracking framework.
Fig. 2. PETS 2009 S2 L1 scenario and mask region. Note that 'square' marker denotes the starting position of each trajectories. And black rectangle represents the mask region.

Fig. 3. Qualitative result of trajectory recovery. 'dot' on solid line and '+' on dotted line denotes ground truth and recovered location, respectively.

Fig. 4. Quantitative comparison of the mean absolute errors (MAE) on each trajectory segment.

\[
A = \begin{bmatrix}
1 & 0 & \Delta \\
0 & 1 & 0 \\
0 & 0 & 1 \\
\end{bmatrix},
\]

\[
Q = \text{diag}(1 - 10^{-6}, 1 - 10^{-6}, 1 - 10^{-4}, 1 - 10^{-4}).
\]

\[
H = [I, \mathbf{0}].
\]

\[
R = \text{diag}(1 - 10^{-6}).
\]
Table 1. Quantitative comparison of the mean of mean absolute error (MMAE) of trajectories and the mean absolute error over all points on the trajectory.

<table>
<thead>
<tr>
<th></th>
<th>MMAE(pixel)</th>
<th>GDT</th>
<th>MAE(pixel)</th>
<th>GDT</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>[15]</td>
<td></td>
<td>[19]</td>
<td></td>
</tr>
<tr>
<td>X</td>
<td>2.2540</td>
<td>1.9138</td>
<td>2.7902</td>
<td>2.4105</td>
</tr>
<tr>
<td>Y</td>
<td>1.1667</td>
<td>0.7731</td>
<td>1.2427</td>
<td>0.8458</td>
</tr>
<tr>
<td>Total</td>
<td>2.7655</td>
<td>2.2918</td>
<td>3.3165</td>
<td>2.7045</td>
</tr>
</tbody>
</table>

Table 2. Comparison of the total execution times

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>[15]</td>
<td>[19]</td>
</tr>
<tr>
<td>Execution Time (ms)</td>
<td>744</td>
<td>104</td>
</tr>
</tbody>
</table>

5. 결 론

본 논문에서는 초기 상태, 목표점에 대한 측정값 및 이에 대한 불확실성, 그리고 초기 상태로부터 목표 지점까지의 도달 시간이 주어질 때, 목표점까지의 개체를 기술하는 목표-지향 상태 방정식을 도출하였다. 그리고 개체 추적의 실험에 의해 생성된 서로 연관 관계를 가지는 전-후 개체 구간이 주어질 때, 이로부터 목표-지향 상태 방정식의 매개 변수들을 구하고 볼 사이의 경로를 복원하는 목표-지향 추적 기법을 제안하였다. 그 결과, 개체의 운동 특성과 불확실성을 반영하면서도, 기존의 끝값의 전-후 개체 구간 사이를 복원하는 기존의 방법들에 비해 높은 성능을 보였다.

결과에 앞서 제안한 목표-지향 상태 방정식을 비선형으로 확장하여 다양한 운동 모델에 대하여 적용할 수 있도록 할 계획이다. 또한 목표-지향 상태 방정식에 대한 심도 있는 분석을 통해 보다 간단하고 적합적인 형태의 계체 복원 기법을 개발하고자 한다.

REFERENCE

오 선호
2007년 경북대학교 컴퓨터공학과 (공학사)
2009년 경북대학교 컴퓨터공학과 (공학석사)
2009년 ~ 현재 컴퓨터학부 박사과정

정 순기
1992년 한국과학기술원 전산학과 (이학사)
1997년 한국과학기술원 전산학과 (공학박사)
1997년 ~ 1998년 University of Maryland, Research Associate
2001년 ~ 2002년 University of Southern California, Research Associate
2008년 ~ 2009년 University of Southern California, Visiting Faculty
1998년 ~ 현재 경북대학교 IT대학 컴퓨터학부 교수
1998년 ~ 현재 (주) IDIS 사외이사
관심분야: Virtual Reality, Artificial Intelligence, Computer Vision, Image Processing, Computer Graphics