DOI QR코드

DOI QR Code

Cytomegalovirus Infection and Memory T Cell Inflation

  • Kim, Jihye (Laboratory of Immunology and Infectious Diseases, Graduate School of Medical Science and Engineering, KAIST) ;
  • Kim, A-Reum (Laboratory of Immunology and Infectious Diseases, Graduate School of Medical Science and Engineering, KAIST) ;
  • Shin, Eui-Cheol (Laboratory of Immunology and Infectious Diseases, Graduate School of Medical Science and Engineering, KAIST)
  • 투고 : 2015.07.02
  • 심사 : 2015.08.10
  • 발행 : 2015.08.31

초록

Cytomegalovirus (CMV) infection in healthy individuals is usually asymptomatic and results in latent infection. CMV reactivation occasionally occurs in healthy individuals according to their immune status over time. T cell responses to CMV are restricted to a limited number of immunodominant epitopes, as compared to responses to other chronic or persistent viruses. This response results in progressive, prolonged expansion of CMV-specific $CD8^+$ T cells, termed 'memory inflation'. The expanded CMV-specific $CD8^+$ T cell population is extraordinarily large and is more prominent in the elderly. CMV-specific $CD8^+$ T cells possess rather similar phenotypic and functional features to those of replicative senescent T cells. In this review, we discuss the general features of CMV-specific inflationary memory T cells and the factors involved in memory inflation.

키워드

참고문헌

  1. Sierro, S., R. Rothkopf, and P. Klenerman. 2005. Evolution of diverse antiviral $CD8^+$ T cell populations after murine cytomegalovirus infection. Eur. J. Immunol. 35: 1113-1123. https://doi.org/10.1002/eji.200425534
  2. Munks, M. W., K. S. Cho, A. K. Pinto, S. Sierro, P. Klenerman, and A. B. Hill. 2006. Four distinct patterns of memory CD8 T cell responses to chronic murine cytomegalovirus infection. J. Immunol. 177: 450-458. https://doi.org/10.4049/jimmunol.177.1.450
  3. Snyder, C. M., K. S. Cho, E. L. Bonnett, D. S. van, G. R. Shellam, and A. B. Hill. 2008. Memory inflation during chronic viral infection is maintained by continuous production of short-lived, functional T cells. Immunity 29: 650-659. https://doi.org/10.1016/j.immuni.2008.07.017
  4. O'Hara, G. A., S. P. Welten, P. Klenerman, and R. Arens. 2012. Memory T cell inflation: understanding cause and effect. Trends Immunol. 33: 84-90. https://doi.org/10.1016/j.it.2011.11.005
  5. Koch, S., A. Larbi, D. Ozcelik, R. Solana, C. Gouttefangeas, S. Attig, A. Wikby, J. Strindhall, C. Franceschi, and G. Pawelec. 2007. Cytomegalovirus infection: a driving force in human T cell immunosenescence. Ann. N. Y. Acad. Sci. 1114: 23-35. https://doi.org/10.1196/annals.1396.043
  6. Gillespie, G. M., M. R. Wills, V. Appay, C. O'Callaghan, M. Murphy, N. Smith, P. Sissons, S. Rowland-Jones, J. I. Bell, and P. A. Moss. 2000. Functional heterogeneity and high frequencies of cytomegalovirus-specific CD8(+) T lymphocytes in healthy seropositive donors. J. Virol. 74: 8140-8150. https://doi.org/10.1128/JVI.74.17.8140-8150.2000
  7. Khan, N., N. Shariff, M. Cobbold, R. Bruton, J. A. Ainsworth, A. J. Sinclair, L. Nayak, and P. A. Moss. 2002. Cytomegalovirus seropositivity drives the CD8 T cell repertoire toward greater clonality in healthy elderly individuals. J. Immunol. 169: 1984-1992. https://doi.org/10.4049/jimmunol.169.4.1984
  8. Lang, K. S., A. Moris, C. Gouttefangeas, S. Walter, V. Teichgraber, M. Miller, D. Wernet, K. Hamprecht, H. G. Rammensee, and S. Stevanovic. 2002. High frequency of human cytomegalovirus (HCMV)-specific $CD8^+$ T cells detected in a healthy CMV-seropositive donor. Cell. Mol. Life Sci. 59: 1076-1080. https://doi.org/10.1007/s00018-002-8488-5
  9. Holtappels, R., M. F. Pahl-Seibert, D. Thomas, and M. J. Reddehase. 2000. Enrichment of immediate-early 1 (m123/pp89) peptide-specific CD8 T cells in a pulmonary CD62L(lo) memory- effector cell pool during latent murine cytomegalovirus infection of the lungs. J. Virol. 74: 11495-11503. https://doi.org/10.1128/JVI.74.24.11495-11503.2000
  10. Karrer, U., S. Sierro, M. Wagner, A. Oxenius, H. Hengel, U. H. Koszinowski, R. E. Phillips, and P. Klenerman. 2003. Memory inflation: continuous accumulation of antiviral $CD8^+$ T cells over time. J. Immunol. 170: 2022-2029. https://doi.org/10.4049/jimmunol.170.4.2022
  11. Arens, R., P. Wang, J. Sidney, A. Loewendorf, A. Sette, S. P. Schoenberger, B. Peters, and C. A. Benedict. 2008. Cutting edge: murine cytomegalovirus induces a polyfunctional CD4 T cell response. J. Immunol. 180: 6472-6476. https://doi.org/10.4049/jimmunol.180.10.6472
  12. Northfield, J., M. Lucas, H. Jones, N. T. Young, and P. Klenerman. 2005. Does memory improve with age? CD85j (ILT-2/LIR-1) expression on CD8 T cells correlates with 'memory inflation' in human cytomegalovirus infection. Immunol. Cell Biol. 83: 182-188. https://doi.org/10.1111/j.1440-1711.2005.01321.x
  13. Day, C. L., D. E. Kaufmann, P. Kiepiela, J. A. Brown, E. S. Moodley, S. Reddy, E. W. Mackey, J. D. Miller, A. J. Leslie, C. DePierres, Z. Mncube, J. Duraiswamy, B. Zhu, Q. Eichbaum, M. Altfeld, E. J. Wherry, H. M. Coovadia, P. J. Goulder, P. Klenerman, R. Ahmed, G. J. Freeman, and B. D. Walker. 2006. PD-1 expression on HIV-specific T cells is associated with T-cell exhaustion and disease progression. Nature 443: 350-354. https://doi.org/10.1038/nature05115
  14. Hertoghs, K. M., P. D. Moerland, S. A. van, E. B. Remmerswaal, S. L. Yong, P. J. van de Berg, S. M. van Ham, F. Baas, B. ten, I, and R. A. van Lier. 2010. Molecular profiling of cytomegalovirus-induced human $CD8^+$ T cell differentiation. J. Clin. Invest 120: 4077-4090. https://doi.org/10.1172/JCI42758
  15. Smith, C. J., H. Turula, and C. M. Snyder. 2014. Systemic hematogenous maintenance of memory inflation by MCMV infection. PLoS Pathog. 10: e1004233. https://doi.org/10.1371/journal.ppat.1004233
  16. Ouyang, Q., W. M. Wagner, A. Wikby, S. Walter, G. Aubert, A. I. Dodi, P. Travers, and G. Pawelec. 2003. Large numbers of dysfunctional $CD8^+$ T lymphocytes bearing receptors for a single dominant CMV epitope in the very old. J. Clin. Immunol. 23: 247-257. https://doi.org/10.1023/A:1024580531705
  17. Turula, H., C. J. Smith, F. Grey, K. A. Zurbach, and C. M. Snyder. 2013. Competition between T cells maintains clonal dominance during memory inflation induced by MCMV. Eur. J. Immunol. 43: 1252-1263. https://doi.org/10.1002/eji.201242940
  18. Klenerman, P., and A. Hill. 2005. T cells and viral persistence: lessons from diverse infections. Nat. Immunol. 6: 873-879. https://doi.org/10.1038/ni1241
  19. Lang, A., J. D. Brien, and J. Nikolich-Zugich. 2009. Inflation and long-term maintenance of CD8 T cells responding to a latent herpesvirus depend upon establishment of latency and presence of viral antigens. J. Immunol. 183: 8077-8087. https://doi.org/10.4049/jimmunol.0801117
  20. Redeker, A., S. P. Welten, and R. Arens. 2014. Viral inoculum dose impacts memory T-cell inflation. Eur. J. Immunol. 44: 1046-1057. https://doi.org/10.1002/eji.201343946
  21. Holtappels, R., C. O. Simon, M. W. Munks, D. Thomas, P. Deegen, B. Kuhnapfel, T. Daubner, S. F. Emde, J. Podlech, N. K. Grzimek, S. A. Oehrlein-Karpi, A. B. Hill, and M. J. Reddehase. 2008. Subdominant CD8 T-cell epitopes account for protection against cytomegalovirus independent of immunodomination. J. Virol. 82: 5781-5796. https://doi.org/10.1128/JVI.00155-08
  22. Munks, M. W., M. C. Gold, A. L. Zajac, C. M. Doom, C. S. Morello, D. H. Spector, and A. B. Hill. 2006. Genome-wide analysis reveals a highly diverse CD8 T cell response to murine cytomegalovirus. J. Immunol. 176: 3760-3766. https://doi.org/10.4049/jimmunol.176.6.3760
  23. Sylwester, A. W., B. L. Mitchell, J. B. Edgar, C. Taormina, C. Pelte, F. Ruchti, P. R. Sleath, K. H. Grabstein, N. A. Hosken, F. Kern, J. A. Nelson, and L. J. Picker. 2005. Broadly targeted human cytomegalovirus-specific $CD4^+$ and $CD8^+$ T cells dominate the memory compartments of exposed subjects. J. Exp. Med. 202: 673-685. https://doi.org/10.1084/jem.20050882
  24. Snyder, C. M., J. E. Allan, E. L. Bonnett, C. M. Doom, and A. B. Hill. 2010. Cross-presentation of a spread-defective MCMV is sufficient to prime the majority of virus-specific $CD8^+$ T cells. PLoS One 5: e9681. https://doi.org/10.1371/journal.pone.0009681
  25. Torti, N., S. M. Walton, T. Brocker, T. Rulicke, and A. Oxenius. 2011. Non-hematopoietic cells in lymph nodes drive memory CD8 T cell inflation during murine cytomegalovirus infection. PLoS Pathog. 7: e1002313. https://doi.org/10.1371/journal.ppat.1002313
  26. Arens, R., and S. P. Schoenberger. 2010. Plasticity in programming of effector and memory CD8 T-cell formation. Immunol. Rev. 235: 190-205. https://doi.org/10.1111/j.0105-2896.2010.00899.x
  27. Arens, R., A. Loewendorf, A. Redeker, S. Sierro, L. Boon, P. Klenerman, C. A. Benedict, and S. P. Schoenberger. 2011. Differential B7-CD28 costimulatory requirements for stable and inflationary mouse cytomegalovirus-specific memory CD8 T cell populations. J. Immunol. 186: 3874-3881. https://doi.org/10.4049/jimmunol.1003231
  28. Humphreys, I. R., A. Loewendorf, T. C. de, K. Schneider, C. A. Benedict, M. W. Munks, C. F. Ware, and M. Croft. 2007. OX40 costimulation promotes persistence of cytomegalovirus-specific CD8 T Cells: A CD4-dependent mechanism. J. Immunol. 179: 2195-2202. https://doi.org/10.4049/jimmunol.179.4.2195
  29. Humphreys, I. R., S. W. Lee, M. Jones, A. Loewendorf, E. Gostick, D. A. Price, C. A. Benedict, C. F. Ware, and M. Croft. 2010. Biphasic role of 4-1BB in the regulation of mouse cytomegalovirus-specific CD8(+) T cells. Eur. J. Immunol. 40: 2762-2768. https://doi.org/10.1002/eji.200940256
  30. Bachmann, M. F., P. Wolint, S. Walton, K. Schwarz, and A. Oxenius. 2007. Differential role of IL-2R signaling for $CD8^+$ T cell responses in acute and chronic viral infections. Eur. J. Immunol. 37: 1502-1512. https://doi.org/10.1002/eji.200637023
  31. Feau, S., R. Arens, S. Togher, and S. P. Schoenberger. 2011. Autocrine IL-2 is required for secondary population expansion of CD8(+) memory T cells. Nat. Immunol. 12: 908-913. https://doi.org/10.1038/ni.2079
  32. van Leeuwen, E. M., G. J. de Bree, E. B. Remmerswaal, S. L. Yong, K. Tesselaar, B. ten, I, and R. A. van Lier. 2005. IL-7 receptor alpha chain expression distinguishes functional subsets of virus-specific human $CD8^+$ T cells. Blood 106: 2091-2098. https://doi.org/10.1182/blood-2005-02-0449
  33. Jones, M., K. Ladell, K. K. Wynn, M. A. Stacey, M. F. Quigley, E. Gostick, D. A. Price, and I. R. Humphreys. 2010. IL-10 restricts memory T cell inflation during cytomegalovirus infection. J. Immunol. 185: 3583-3592. https://doi.org/10.4049/jimmunol.1001535
  34. Linton, P. J., and K. Dorshkind. 2004. Age-related changes in lymphocyte development and function. Nat. Immunol. 5: 133-139.
  35. Walford, R. L. 1969. Immunologic aspects of aging. Klin. Wochenschr. 47: 599-605. https://doi.org/10.1007/BF01876949
  36. Akbar, A. N., and J. M. Fletcher. 2005. Memory T cell homeostasis and senescence during aging. Curr. Opin. Immunol. 17: 480-485. https://doi.org/10.1016/j.coi.2005.07.019
  37. Pawelec, G., E. Derhovanessian, A. Larbi, J. Strindhall, and A. Wikby. 2009. Cytomegalovirus and human immunosenescence. Rev. Med. Virol. 19: 47-56. https://doi.org/10.1002/rmv.598
  38. Czesnikiewicz-Guzik, M., W. W. Lee, D. Cui, Y. Hiruma, D. L. Lamar, Z. Z. Yang, J. G. Ouslander, C. M. Weyand, and J. J. Goronzy. 2008. T cell subset-specific susceptibility to aging. Clin. Immunol. 127: 107-118. https://doi.org/10.1016/j.clim.2007.12.002
  39. Cavanagh, M. M., Q. Qi, C. M. Weyand, and J. J. Goronzy. 2011. Finding balance: T cell regulatory receptor expression during aging. Aging Dis. 2: 398-413.
  40. Derhovanessian, E., A. Larbi, and G. Pawelec. 2009. Biomarkers of human immunosenescence: impact of Cytomegalovirus infection. Curr. Opin. Immunol. 21: 440-445. https://doi.org/10.1016/j.coi.2009.05.012
  41. Fulop, T., A. Larbi, and G. Pawelec. 2013. Human T cell aging and the impact of persistent viral infections. Front. Immunol. 4: 271.
  42. Pawelec, G., A. Akbar, C. Caruso, R. Effros, B. Grubeck-Loebenstein, and A. Wikby. 2004. Is immunosenescence infectious? Trends Immunol. 25: 406-410. https://doi.org/10.1016/j.it.2004.05.006
  43. Pawelec, G. 2014. Immunosenenescence: role of cytomegalovirus. Exp. Gerontol. 54: 1-5. https://doi.org/10.1093/geront/gnt134
  44. Wikby, A., F. Ferguson, R. Forsey, J. Thompson, J. Strindhall, S. Lofgren, B. O. Nilsson, J. Ernerudh, G. Pawelec, and B. Johansson. 2005. An immune risk phenotype, cognitive impairment, and survival in very late life: impact of allostatic load in Swedish octogenarian and nonagenarian humans. J. Gerontol. A Biol. Sci. Med. Sci. 60: 556-565. https://doi.org/10.1093/gerona/60.5.556
  45. Savva, G. M., A. Pachnio, B. Kaul, K. Morgan, F. A. Huppert, C. Brayne, and P. A. Moss. 2013. Cytomegalovirus infection is associated with increased mortality in the older population. Aging Cell 12: 381-387. https://doi.org/10.1111/acel.12059
  46. Rahbar, A., A. Orrego, I. Peredo, M. Dzabic, N. Wolmer-Solberg, K. Straat, G. Stragliotto, and C. Soderberg-Naucler. 2013. Human cytomegalovirus infection levels in glioblastoma multiforme are of prognostic value for survival. J. Clin. Virol. 57: 36-42. https://doi.org/10.1016/j.jcv.2012.12.018
  47. Wolmer-Solberg, N., N. Baryawno, A. Rahbar, D. Fuchs, J. Odeberg, C. Taher, V. Wilhelmi, J. Milosevic, A. A. Mohammad, T. Martinsson, B. Sveinbjornsson, J. I. Johnsen, P. Kogner, and C. Soderberg-Naucler. 2013. Frequent detection of human cytomegalovirus in neuroblastoma: a novel therapeutic target? Int. J. Cancer 133: 2351-2361. https://doi.org/10.1002/ijc.28265
  48. Wall, N. A., C. D. Chue, N. C. Edwards, T. Pankhurst, L. Harper, R. P. Steeds, S. Lauder, J. N. Townend, P. Moss, and C. J. Ferro. 2013. Cytomegalovirus seropositivity is associated with increased arterial stiffness in patients with chronic kidney disease. PLoS One 8: e55686. https://doi.org/10.1371/journal.pone.0055686
  49. Cicin-Sain, L., A. W. Sylwester, S. I. Hagen, D. C. Siess, N. Currier, A. W. Legasse, M. B. Fischer, C. W. Koudelka, M. K. Axthelm, J. Nikolich-Zugich, and L. J. Picker. 2011. Cytomegalovirus-specific T cell immunity is maintained in immunosenescent rhesus macaques. J. Immunol. 187: 1722-1732. https://doi.org/10.4049/jimmunol.1100560

피인용 문헌

  1. Immunosenescence: the Role of Aging in the Predisposition to Neuro-Infectious Complications Arising from the Treatment of Multiple Sclerosis vol.17, pp.8, 2017, https://doi.org/10.1007/s11910-017-0771-9
  2. Aged T cells and cardiovascular disease vol.14, pp.12, 2015, https://doi.org/10.1038/cmi.2017.111
  3. γδ T Cell-Mediated Immunity to Cytomegalovirus Infection vol.8, pp.None, 2015, https://doi.org/10.3389/fimmu.2017.00105
  4. Cytomegalovirus-Specific T Cells Restricted by HLA-Cw*0702 Increase Markedly with Age and Dominate the CD8 + T-Cell Repertoire in Older People vol.8, pp.None, 2015, https://doi.org/10.3389/fimmu.2017.01776
  5. Major TCR Repertoire Perturbation by Immunodominant HLA-B * 44:03-Restricted CMV-Specific T Cells vol.9, pp.None, 2015, https://doi.org/10.3389/fimmu.2018.02539
  6. New Developments in the Management of Cytomegalovirus Infection After Transplantation vol.78, pp.11, 2018, https://doi.org/10.1007/s40265-018-0943-1
  7. Pharmacologic and immunologic management of cytomegalovirus infection after solid organ and hematopoietic stem cell transplantation vol.11, pp.8, 2015, https://doi.org/10.1080/17512433.2018.1501557
  8. Clinical Correlation of Cytomegalovirus Infection With CMV-specific CD8+ T-cell Immune Competence Score and Lymphocyte Subsets in Solid Organ Transplant Recipients vol.103, pp.4, 2015, https://doi.org/10.1097/tp.0000000000002396
  9. Clinically Relevant Immune Responses against Cytomegalovirus: Implications for Precision Medicine vol.20, pp.8, 2015, https://doi.org/10.3390/ijms20081986
  10. Immunosenescence: A systems-level overview of immune cell biology and strategies for improving vaccine responses vol.124, pp.None, 2019, https://doi.org/10.1016/j.exger.2019.110632
  11. Human cytomegalovirus seroprevalence and titres in solid organ transplant recipients and transplant donors in Seoul, South Korea vol.19, pp.1, 2015, https://doi.org/10.1186/s12879-019-4607-x
  12. Immunosenescence and human vaccine immune responses vol.16, pp.1, 2015, https://doi.org/10.1186/s12979-019-0164-9
  13. Telomerase Activation to Reverse Immunosenescence in Elderly Patients With Acute Coronary Syndrome: Protocol for a Randomized Pilot Trial vol.9, pp.9, 2015, https://doi.org/10.2196/19456
  14. Targeting Inflammation and Immunosenescence to Improve Vaccine Responses in the Elderly vol.11, pp.None, 2015, https://doi.org/10.3389/fimmu.2020.583019
  15. CD8+ T cells in HIV control, cure and prevention vol.20, pp.8, 2020, https://doi.org/10.1038/s41577-020-0274-9
  16. Cytomegalovirus antibody levels and mortality among hospitalised elderly patients vol.52, pp.8, 2015, https://doi.org/10.1080/07853890.2020.1811888
  17. Antigenic competition in the generation of multi-virus-specific cell lines for immunotherapy of human cytomegalovirus, polyomavirus BK, Epstein-Barr virus and adenovirus infection in haematopoietic st vol.228, pp.None, 2015, https://doi.org/10.1016/j.imlet.2020.09.009
  18. Cancer Vaccines: Adjuvant Potency, Importance of Age, Lifestyle, and Treatments vol.11, pp.None, 2015, https://doi.org/10.3389/fimmu.2020.615240
  19. Treg-Resistant Cytotoxic CD4+ T Cells Dictate T Helper Cells in Their Vicinity: TH17 Skewing and Modulation of Proliferation vol.22, pp.11, 2015, https://doi.org/10.3390/ijms22115660
  20. Reinforcing the Immunocompromised Host Defense against Fungi: Progress beyond the Current State of the Art vol.7, pp.6, 2021, https://doi.org/10.3390/jof7060451
  21. Integrated analysis of multimodal single-cell data vol.184, pp.13, 2021, https://doi.org/10.1016/j.cell.2021.04.048
  22. Viral Control of Glioblastoma vol.13, pp.7, 2015, https://doi.org/10.3390/v13071264
  23. Greater extent of blood‐tumor TCR repertoire overlap is associated with favorable clinical responses to PD‐1 blockade vol.112, pp.8, 2015, https://doi.org/10.1111/cas.14975
  24. How Immunosenescence and Inflammaging May Contribute to Hyperinflammatory Syndrome in COVID-19 vol.22, pp.22, 2021, https://doi.org/10.3390/ijms222212539
  25. NK and CD8+ T cell phenotypes predict onset and control of CMV viremia after kidney transplant vol.6, pp.21, 2021, https://doi.org/10.1172/jci.insight.153175
  26. Aging and CMV discordance are associated with increased immune diversity between monozygotic twins vol.18, pp.1, 2021, https://doi.org/10.1186/s12979-021-00216-1