DOI QR코드

DOI QR Code

Effect of Monascus Fermentation on Content of Monacolin K and Antioxidant Activities of Germinated Brown Rice

홍국균 발효가 발아현미의 Monacolin K 함량과 항산화 활성에 미치는 영향

  • Lee, Sang Hoon (Department of Food Science and Biotechnology, Chungbuk National University) ;
  • Jang, Gwi Yeong (Department of Food Science and Biotechnology, Chungbuk National University) ;
  • Kim, Min Young (Department of Food Science and Biotechnology, Chungbuk National University) ;
  • Kim, Shinje (Center for Fungi and Plant Genome Research, FnP Corp.) ;
  • Lee, Yuon Ri (Department of Food and Nutrition, Daejeon Health Science College) ;
  • Lee, Junsoo (Department of Food Science and Biotechnology, Chungbuk National University) ;
  • Jeong, Heon Sang (Department of Food Science and Biotechnology, Chungbuk National University)
  • 이상훈 (충북대학교 식품생명공학과) ;
  • 장귀영 (충북대학교 식품생명공학과) ;
  • 김민영 (충북대학교 식품생명공학과) ;
  • 김신제 ((주)에프앤피 중앙연구소) ;
  • 이연리 (대전보건대학 식품영양과) ;
  • 이준수 (충북대학교 식품생명공학과) ;
  • 정헌상 (충북대학교 식품생명공학과)
  • Received : 2015.06.02
  • Accepted : 2015.08.03
  • Published : 2015.08.31

Abstract

This study was performed to investigate the changes in monacolin K content and antioxidant activities of Monascus-fermented brown rice with different germination temperatures and periods. Brown rice was germinated at 32, 35 and $37^{\circ}C$ for 1~4 days, after white rice (WB), brown rice (BR), and germinated brown rice (GBR) were fermented with M. pilosus 305-9 at $30^{\circ}C$ for 20 days. The redness, yellowness and Monascus pigments increased after germination. Total monacolin K content increased from 215.85 mg/kg of BR to 1,263.04 mg/kg of GBR ($32^{\circ}C$/1 day), whereas monacolin K content decreased with increase in germination period. Citrinin was not detected in any of the samples. Total polyphenol (TPC) and flavonoid contents (TFC) increased with increase in germination temperature and period, whereas electron donating ability (EDA) and total antioxidant activities (TAA) decreased due to reduction of Monascus pigment content. The TPC and TFC showed the highest values (13.80 mg/g and 1.30 mg/g, respectively) in GBR ($37^{\circ}C$/4 day), whereas EDA and TAA showed the highest values (22.16 mg Trolox equivalent/g and 62.27 mg ascorbic acid equivalent/g, respectively) in GBR ($32^{\circ}C$/1 day). These results indicated that the optimal germination temperature and period for increasing monacolin K content and antioxidant activities was found to be at $32^{\circ}C$ for 1 day. In addition, it was found that M. pilosus 305-9 was a useful strain for increasing monacolin K content without producing citrinin in functional foods and pharmaceutical industrial regions.

발아 온도와 기간에 따른 발아현미 홍국배양물의 홍국색소, monacolin K, citrinin 및 페놀 화합물 생성량과 항산화 활성 변화를 조사하였다. 발아 기간이 증가함에 따라 명도는 증가하였으나 적색도와 황색도는 감소하였고, 적색($A_{500}$), 오렌지색($A_{470}$) 및 황색($A_{400}$) 색소 생성량도 동일한 경향이었다. 총 monacolin K는 현미(215.85 mg/kg)가 백미(40.41 mg/kg)보다 높았으며, $32^{\circ}C$에서 1일간 발아시킨 발아현미 (1,263.04 mg/kg)에서 가장 높은 함량을 보였으나 발아 기간이 증가함에 따라 감소하였다. 곰팡이 독소인 citrinin은 모든 처리구에서 검출되지 않았다. 총 폴리페놀과 플라보노이드 함량은 발아 온도와 기간이 증가함에 따라 유의적으로 증가하여 $37^{\circ}C$에서 4일간 발아시킨 발아현미에서 13.80 mg/g과 1.30 mg/g으로 가장 높았다. 전자공여능과 총 항산 화력은 발아에 의해 증가되어 $32^{\circ}C$에서 1일간 발아시킨 발아 현미에서 각각 22.16 mg TE/g과 62.27 mg AAE/g으로 가장 높았으나 발아 기간이 증가함에 따라 감소하였다. 이상의 결과로부터 홍국색소와 monacolin K 생성량을 증가시키기 위한 기질로 발아현미가 유용하며, 배양에 사용된 Monascus pilosus 305-9는 citrinin을 생성하지 않고 monacolin K 생성량을 증가시켜 식품의 기능성 증진용 소재 및 균주로서의 활용이 기대된다.

Keywords

References

  1. Kang DZ, Um JB, Lee SK, Lee JH. 2003. Content of rutin and monacolin K in the red buckwheat fermented with Monascus ruber. Korean J Food Sci Technol 35: 242-245.
  2. Martinkova L, Jzlova P, Vesely D. 1995. Biological activity of polyketide pigments produced by the fungus Monascus. J Appl Bacteriol 79: 609-616. https://doi.org/10.1111/j.1365-2672.1995.tb00944.x
  3. Rhyu MR, Kim EY. 2002. The relation between antihypertensive effect and $\gamma$-aminobutyric acid, mycelial weight and pigment of Monascus. Korean J Food Sci Technol 34: 737-740.
  4. Endo A. 1979. Monacolin K, a new hypocholesterolemic agent produced by a Monascus species. J Antibiot 32: 852-854. https://doi.org/10.7164/antibiotics.32.852
  5. KFDA. 2014. Health Functional Food Code. Korea Food and Drug Adminstration, Seoul, Korea. p 113.
  6. Franco CM, Fente CA, Vazquez B, Cepeda A, Lallaoui L, Prognon P, Mahuzier G. 1996. Simple and sensitive highperformance liquid chromatography-fluorescence method for the determination of citrinin application to the analysis of fungal cultures and cheese extracts. J Chromatogr A 723:69-75. https://doi.org/10.1016/0021-9673(95)00818-7
  7. Lee JY. 2002. Minimization of the citrinin produced during Monascus fermentation. MS Thesis. Yonsei University, Seoul, Korea.
  8. Kang HR. 2011. Reduction of citrinin formation in Angkak produced by Monascus purpureus. MS Thesis. Korea University, Seoul, Korea.
  9. Kim MJ. 1995. Analysis of the factors enhancing Monascus pigment production in mixed culture. PhD Dissertation. Yonsei University, Seoul, Korea.
  10. Tseng YY, Chen MT, Lin CF. 2000. Growth, pigment production and protease activity of Monascus purpureus as affected by salt, sodium nitrite, polyphosphate and various sugars. J Appl Microbiol 88: 31-37. https://doi.org/10.1111/j.1365-2672.2000.tb05330.x
  11. Kim SD, Kim ID, Park HD, Park MJ. 2001. Pigment content in meju fermented by a Monascus species with different materials. J Korean Soc Food Sci Nutr 30: 1047-1052.
  12. Kwak EJ, Cha SK, Lim SI. 2003. The optimal condition for the production and extraction of monacolin K from red-Koji. Korean J Food Sci Technol 35: 830-834.
  13. Lee SM, Kim HS, Yu TS. 2003. The optimal condition for production of red pigment by Monascus anka on solid culture. J Korean Soc Food Sci Nutr 32: 155-160. https://doi.org/10.3746/jkfn.2003.32.2.155
  14. Park JY, Han SI, Seo WD, Ra JE, Sim EY, Nam MH. 2014. Study on Monascus strains and characteristic for manufacturing red yeast rice with high production of monacolin K. Korean J Crop Sci 59: 167-173. https://doi.org/10.7740/kjcs.2014.59.2.167
  15. Lee YR, Woo KS, Kim KJ, Son JR, Jeong HS. 2007. Antioxidant activities of ethanol extracts from germinated specialty rough rice. Food Sci Biotechnol 16: 765-770.
  16. Kim HY, Hwang IG, Kim TM, Park DS, Kim JH, Kim DJ, Lee JS, Jeong HS. 2011. Antioxidant and angiotensin converting enzyme Ⅰ inhibitory activity on different parts of germinated rough rice. J Korean Soc Food Sci Nutr 40:775-780. https://doi.org/10.3746/jkfn.2011.40.6.775
  17. Kim MY, Lee SH, Jang GY, Park HJ, Li M, Kim SJ, Lee YR, Lee J, Jeong HS. 2013. Effects of high pressure treatment on antioxidant compounds and activity of germinated rough rice (Oryza sativa L.). J Korean Soc Food Sci Nutr 42: 1783-1791. https://doi.org/10.3746/jkfn.2013.42.11.1783
  18. Kim HY, Hwang IG, Joung EM, Kim TM, Kim DJ, Park DS, Lee J, Jeong HS. 2010. Antiproliferation effects of germinated-Korean rough rice extract on human cancer cells. J Korean Soc Food Sci Nutr 39: 325-330. https://doi.org/10.3746/jkfn.2010.39.3.325
  19. Johns M, Stuart D. 1991. Production of pigments by Monascus purpureus in solid culture. J Ind Microbiol 8: 23-28. https://doi.org/10.1007/BF01575587
  20. Avula B, Cohen PA, Wang YH, Sagi S, Feng W, Wang M, Zweigenbaum J, Shuangcheng M, Khan IA. 2014. Chemical profiling and quantification of monacolins and citrinin in red yeast rice commercial raw materials and dietary supplements using liquid chromatography-accurate QToF mass spectrometry: Chemometrics application. J Pharm Biomed Anal 100: 243-253. https://doi.org/10.1016/j.jpba.2014.07.039
  21. Dewanto V, Wu X, Liu RH. 2002. Processed sweet corn has higher antioxidant activity. J Agric Food Chem 50:4959-4964. https://doi.org/10.1021/jf0255937
  22. Blois MS. 1958. Antioxidant determinations by the use of a stable free radical. Nature 181: 1199-1200. https://doi.org/10.1038/1811199a0
  23. Wild D, Tóth G, Humpf HU. 2002. New Monascus metabolite isolated from red yeast rice (angkak, red koji). J Agric Food Chem 50: 3999-4002. https://doi.org/10.1021/jf020023s
  24. Babitha S, Soccols CR, Pandey A. 2007. Solid-state fermentation for the production of Monascus pigments from jackfruit seed. Bioresour Technol 98: 1554-1560. https://doi.org/10.1016/j.biortech.2006.06.005
  25. Kim DJ, Oh SK, Yoon MR, Chun AR, Hong HC, Lee JS, Kim YK. 2010. Antioxidant compounds and antioxidant activities of the 70% ethanol extracts from brown rice and milled rice by cultivar. J Korean Soc Food Sci Nutr 39:467-473. https://doi.org/10.3746/jkfn.2010.39.3.467
  26. Park CD, Jung HJ, Lee HW, Kim HS, Yu TS. 2005. Antioxidant activity of Monascus pigment of Monascus purpureus P-57 mutant. Korean J Microbiol 41: 135-139.

Cited by

  1. 홍국발효 대두의 항산화 및 항당뇨 활성 vol.34, pp.2, 2021, https://doi.org/10.9799/ksfan.2021.34.2.187