DOI QR코드

DOI QR Code

상업용 메디컬푸드 및 탄수화물 급원의 발효성 당류 함량에 관한 연구

Fermentable Sugar Contents of Commercial Medical Foods and Carbohydrate Ingredients

  • Shin, Hee-Chang (Central Research Institute, Dr. Chung's Food Co. Ltd.) ;
  • Kang, Nam-Hee (Central Research Institute, Dr. Chung's Food Co. Ltd.) ;
  • Lee, Jang-Woon (Central Research Institute, Dr. Chung's Food Co. Ltd.) ;
  • Lee, Yoon-Bok (Central Research Institute, Dr. Chung's Food Co. Ltd.) ;
  • Lee, Kyun-Hee (Central Research Institute, Dr. Chung's Food Co. Ltd.) ;
  • Oh, Seung-Hyun (Central Research Institute, Dr. Chung's Food Co. Ltd.)
  • 투고 : 2015.04.22
  • 심사 : 2015.07.06
  • 발행 : 2015.08.31

초록

본 연구에서는 최근 연구 결과들에 기초하여 발효성 당류인 FODMAP(fermentable oligosaccharides, disaccharides, monosaccharides, and polyols)이 설사와 높은 상관성을 가지고 있을 것이라 판단하였다. 따라서 상업용 메디컬푸드와 탄수화물 급원으로부터 FODMAP 함량을 측정하였다. 상업용 메디컬푸드의 단당류(fructose)와 이당류(lactose)의 함량 범위는 각각 ND~0.158, ND~0.304 g/200 mL였다. 삼당류(raffinose)와 사당류(stachyose)의 함량 범위는 각각 0.051~0.738, ND~0.579 g/200 mL였다. 또한 프럭토올리고당의 함량 범위는 1-kestose ND~0.413 g/200 mL, nystose ND~1.239 g/200 mL, 1-fructofuranosylnystose 0.205~0.458 g/200 mL였다. 탄수화물 급원 중 단당류(fructose)는 치커리 식이섬유($18.877{\pm}4.320g/kg$)에서만 검출되었으며, 이당류(lactose)는 모든 급원에서 검출되지 않았다. 삼당류(raffinose)의 함량은 치커리 식이섬유 $61.523{\pm}3.014g/kg$, 대두 식이섬유 $3.273{\pm}0.499g/kg$, 난소화성 말토덱스트린 $5.430{\pm}0.671g/kg$, 말토덱스트린(DE10~15, DE15~20)에서는 검출되지 않았다. 사당류(stachyose)의 함량은 치커리 식이섬유 $78.817{\pm}5.483g/kg$, 대두 식이섬유 $5.547{\pm}0.822g/kg$, 난소화성 말토덱스트린 $13.180{\pm}1.165g/kg$, 말토덱스트린(DE10~15) $16.440{\pm}0.370g/kg$, 말토덱스트린(DE15~20) $22.553{\pm}1.491g/kg$이었다. 프럭토올리고당(1-kestose, nystose, 1-fructofuranosylnystose)의 함량은 치커리 식이섬유 $29.369{\pm}2.553g/kg$, $39.430{\pm}6.740g/kg$, $50.407{\pm}2.642g/kg$, 대두 식이섬유 ND, ND, $18.647{\pm}0.397g/kg$, 난소화성 말토덱스트린 ND, $16.667{\pm}1.719g/kg$, $17.107{\pm}1.814g/kg$, 말토덱스트린 (DE10~15) ND, ND, $16.533{\pm}2.083g/kg$, 말토덱스트린 (DE15~20) ND, ND, $27.490{\pm}1.783g/kg$이었다. FODMAP은 탄수화물의 일종으로 메디컬푸드 제품의 탄수화물과 FODMAP 함량 간에 양의 상관관계를 가질 것으로 예상하였으나 r=0.55로 밀접한 상관성을 나타내지는 않았다. 국내외 메디컬푸드는 모두 유사한 원재료와 영양설계로 구성되어 있으나 사용되는 원재료의 종류에 따라 유래되는 FODMAP 함량이 다르기 때문에 제품 간의 함량 차이가 있는 것으로 생각된다. 본 연구에서 측정된 상업용 메디컬푸드 제품 및 탄수화물 급원의 FODMAP 함량 분석은 상대적으로 부족한 FODMAP 정량 분석 연구에 활용될 것으로 생각되며, 나아가 경관급식의 주요 부적응증인 설사를 최소화하는 메디컬푸드의 제품개발 및 원재료 선정에 기초 자료로 활용될 것이다.

Medical foods are enteral nutrition for patients, but they cause maladaptation symptoms like diarrhea. Although the cause of diarrhea remains unknown, some studies have indicated that the cause of diarrhea is fermentable oligosaccharides, disaccharides, monosaccharides, and polyols (FODMAP). This is a consideration for medical foods since they are easily fermented by intestinal bacterial. In this study, we estimated the FODMAP contents of commercial medical foods and carbohydrate ingredients. We measured the concentrations of FODMAP in 13 types of different medical foods and five types of carbohydrate ingredients by using high performance liquid chromatography with an evaporative light scattering detector (HPLC-ELSD). The limits of detection of FODMAP were fructose, 0.002; lactose, 0.010; raffinose, 0.003; stachyose, 0.032; 1-kestose, 0.005; nystose, 0.012; and 1-fructofuranosylnystose, 0.003 mg/kg. Limits of quantitation of FODMAP were fructose, 0.008; lactose, 0.033; raffinose, 0.009; stachyose, 0.107; 1-kestose, 0.015; nystose, 0.042; and 1-fructofuranosylnystose, 0.011 mg/kg, respectively. Concentration of FODMAP ranged from 0.428~2.968 g/200 mL. Concentrations of carbohydrate ingredients in FODMAP were chicory fiber, 278.423; soy fiber, 27.467; indigestible maltodextrin, 52.384; maltodextrin (DE10~15), 32.973; and maltodextrin (DE15~20), 50.043 g/kg. Contents of carbohydrates were 19.0~41.0 g/200 mL in commercial medical foods. We expected a correlation between contents of carbohydrates and FODMAP, as carbohydrates included FODMAP. However, we detected a low correlation (r=0.55). Since most commercial medical foods have a similar carbohydrate ingredients and nutritional values, the difference between products was determined by FODMAP contents of carbohydrate ingredients. In this study, we analyzed FODMAP contents of commercial medical foods and carbohydrate ingredients. These results are expected to be utilized as basic data for product development and minimizing maladaptation of medical foods.

키워드

참고문헌

  1. Barrett JS, Gibson PR. 2012. Fermentable oligosaccharides, disaccharides, monosaccharides and polyols (FODMAPs) and nonallergic food intolerance: FODMAPs or food chemicals?. Therap Adv Gastroenterol 5: 261-268. https://doi.org/10.1177/1756283X11436241
  2. Guenter PA, Settle RG, Perlmutter S, Marino PL, DeSimone GA, Rolandelli RH. 1991. Tube feeding-related diarrhea in acutely III patients. J Parenter Enteral Nutr 15: 227-280.
  3. Yim JH, Cheong IH, Park TH, Lee YB, Han JH, Park JS, Lee KH, Lee SH, Ahn JB, Kim KY, Lee KH, Sohn HS. 2007. Effect of dietary fiber from soybean hull on the recovery of diarrhea in rats. Korean J Food Sci Technol 39:588-592.
  4. Nakao M, Ogura Y, Satake S, Ito I, Iguchi A, Takagi K, Nabeshima T. 2002. Usefulness of soluble dietary fiber for the treatment of diarrhea during enteral nutrition in elderly patients. Nutrition 18: 35-39. https://doi.org/10.1016/S0899-9007(01)00715-8
  5. Spapen H, Diltoer M, Van Malderen C, Opdenacker G, Suys E, Huyghens L. 2001. Soluble fiber reduces the incidence of diarrhea in septic patients receiving total enteral nutrition: a prospective, double-blind, randomized, and controlled trial. Clin Nutr 20: 301-305. https://doi.org/10.1054/clnu.2001.0399
  6. Halmos EP, Muir JG, Barrett JS, Deng M, Shepherd SJ, Gibson PR. 2010. Diarrhoea during enteral nutrition is predicted by the poorly absorbed short-chain carbohydrate (FODMAP) content of the formula. Aliment Pharmacol Ther 32: 925-933. https://doi.org/10.1111/j.1365-2036.2010.04416.x
  7. Halmos EP, Christophersen CT, Bird AR, Shepherd SJ, Gibson PR, Muir JG. 2015. Diets that differ in their FODMAP content alter the colonic luminal microenvironment. Gut 64:93-100. https://doi.org/10.1136/gutjnl-2014-307264
  8. de Roest RH, Dobbs BR, Chapman BA, Batman B, O'Brien LA, Leeper JA, Hebblethwaite CR, Gearry RB. 2013. The low FODMAP diet improves gastrointestinal symptoms in patients with irritable bowel syndrome: a prospective study. Int J Clin Pract 67: 895-903. https://doi.org/10.1111/ijcp.12128
  9. Gearry RB, Irving PM, Barrett JS, Nathan DM, Shepherd SJ, Gibson PR. 2009. Reduction of dietary poorly absorbed short-chain carbohydrates (FODMAPs) improves abdominal symptoms in patients with inflammatory bowel disease-a pilot study. J Crohns Colitis 3: 8-14. https://doi.org/10.1016/j.crohns.2008.09.004
  10. Park KS. 2014. Can low FODMAP diet be considered as first-line therapy in the management of irritable bowel syndrome?. Korean J Gastroenterol 64: 311-314. https://doi.org/10.4166/kjg.2014.64.5.311
  11. Gibson PR, Shepherd SJ. 2009. Evidence-based dietary management of functional gastrointestinal symptoms: The FODMAP approach. J Gastroenterol Hepatol 25: 252-258.
  12. Fedewa A, Rao SS. 2014. Dietary fructose intolerance, fructan intolerance and FODMAPs. Curr Gastroenterol Rep 16:370. https://doi.org/10.1007/s11894-013-0370-0
  13. Mussatto SI, Mancilha IM. 2007. Non-digestible oligosaccharides: A review. Carbohydr Polym 68: 587-597. https://doi.org/10.1016/j.carbpol.2006.12.011
  14. Bankhead R, Boullata J, Brantley S, Corkins M, Guenter P, Krenitsky J, Lyman B, Metheny NA, Mueller C, Robbins S, Wessel J. 2009. Enteral nutrition practice recommendations. J Parenter Enteral Nutr 33: 122-167. https://doi.org/10.1177/0148607108330314
  15. Kim GH, Hwang YS, Ahn KG, Kim GP, Kim MJ, Hong SB, Moon JK, Choung MG. 2014. Determination of soluble carbohydrates in soybean seeds using high performance liquid chromatography with evaporative light scattering detection. J Korean Soc Food Sci Nutr 43: 1062-1067. https://doi.org/10.3746/jkfn.2014.43.7.1062
  16. van Loo J, Coussement P, de Leenheer L, Hoebregs H, Smits G. 1995. On the presence of inulin and oligofructose as natural ingredients in the western diet. Crit Rev Food Sci Nutr 35: 525-552. https://doi.org/10.1080/10408399509527714
  17. Pollock CJ, Hall MA, Roberts DP. 1979. Structural analysis of fructose polymers by gas-liquid chromatography and gel filtration. J Chromatogr A 171: 411-415. https://doi.org/10.1016/S0021-9673(01)95324-5
  18. Ganaie MA, Lateef A, Gupta US. 2014. Enzymatic trends of fructooligosaccharides production by microorganisms. Appl Biochem Biotechnol 172: 2143-2159. https://doi.org/10.1007/s12010-013-0661-9
  19. Kim JW, Shin HH, Kim JM, Kim YS, Pyun YR. 1994. Preparation and characterization of rice starch maltodextrin. Korean J Food Sci Technol 26: 819-823.
  20. Yook C, Kim JS, Kim JR. 1999. Production and characterization of branched maltodextrin. J Korean Soc Food Sci Nutr 28: 172-177.
  21. Han JH, Lee KH, Sohn HS, Lee YB, Park JS, Oh MJ. 2008. Evaluation of enteral foods prepared with soybean dietary fiber for patients with diarrhea. J Agri Sci Chungnam Nat'l Univ 35: 41-51.