DOI QR코드

DOI QR Code

Expression of Rice Chitinase Gene in Genetically Engineered Tomato Confers Enhanced Resistance to Fusarium Wilt and Early Blight

  • Jabeen, Nyla (Department of Bioinformatics and Biotechnology, International Islamic University) ;
  • Chaudhary, Zubeda (Department of Botany, Hazara University) ;
  • Gulfraz, Muhammad (Department of Chemistry, Comsats Institute of Information Technology) ;
  • Rashid, Hamid (Department of Bioinformatics, Mohammad Ali Jinnah University) ;
  • Mirza, Bushra (Department of Bioinformatics and Biotechnology, International Islamic University)
  • Received : 2015.03.06
  • Accepted : 2015.06.01
  • Published : 2015.09.01

Abstract

This is the first study reporting the evaluation of transgenic lines of tomato harboring rice chitinase (RCG3) gene for resistance to two important fungal pathogens Fusarium oxysporum f. sp. lycopersici (Fol) causing fusarium wilt and Alternaria solani causing early blight (EB). In this study, three transgenic lines TL1, TL2 and TL3 of tomato Solanum lycopersicum Mill. cv. Riogrande genetically engineered with rice chitinase (RCG 3) gene and their R1 progeny was tested for resistance to Fol by root dip method and A. solani by detached leaf assay. All the R0 transgenic lines were highly resistant to these fungal pathogens compared to nontransgenic control plants. The pattern of segregation of three independent transformant for Fol and A. solani was also studied. Mendelian segregation was observed in transgenic lines 2 and 3 while it was not observed in transgenic line 1. It was concluded that introduction of chitinase gene in susceptible cultivar of tomato not only enhanced the resistance but was stably inherited in transgenic lines 2 and 3.

Keywords

References

  1. Agrios, N. 1998. Plant pathology. 4th ed. Academic Press Incorporation, New York.
  2. Asao, H., Nishizawa, Y., Arai, S., Sato, T., Hirai, M., Yoshida, K., Shimmyo. and Hibi, T. 1997. Enhanced resistance against a fungal pathogen Sphaerothecahumali in transgenic strawberry expressing a rice chitinase gene. Plants Biotechnol. 14:145-149. https://doi.org/10.5511/plantbiotechnology.14.145
  3. Bose, K. and Som, M. 1986. Vegetable crops in India. 1st ed. NayaPrikash, Calcutta. 262-264.
  4. Chaerani, R., Groenwold, R., Stam, P., Roeland, E. and Voorrips. 2007. Assessment of early blight (Alternaria solani) resistance in tomato using a droplet inoculation method. J. Gen. Plant Pathol. 73:96-103. https://doi.org/10.1007/s10327-006-0337-1
  5. Chenault, D., Melouk, A. and Payton, E. 2005. Field reaction to Sclerotinia blight among transgenic peanut lines containing antifungal genes. Crop Sci. 45:511-515. https://doi.org/10.2135/cropsci2005.0511
  6. Collinge, B., Kragh, M., Mikkelsen, D., Nielsen, K., Rasmussen, U. and Vad, K. 1993. Plant chitinases. Plant J. 3:31-40. https://doi.org/10.1046/j.1365-313X.1993.t01-1-00999.x
  7. Datta, K., Koukolikova-Nicola, Z., Baisakh, N., Oliva, N. and Datta, K. 2000. Agrobacterium-mediated engineering for sheath blight resistance of indica rice cultivars from different ecosystems. Theor. Appl. Genet. 100:832-839. https://doi.org/10.1007/s001220051359
  8. Datta, K., Tu, J., Oliva, N., Ona, I., Velazhahan, R., Mew, T., Muthukrishnan, S. and Datta, S. 2001. Enhaced resistance to sheath blight by constitutive expression of infection-related rice chitinase in transgenic elite indica rice cultivars. Plant Sci. 160:405-414. https://doi.org/10.1016/S0168-9452(00)00413-1
  9. Foolad, M. R., Ntahimpera, N., Christ, B. J. and Lin, G. Y. 2000. Comparison of field, greenhouse, and detached-leaflet evaluations of tomato germ plasm for early blight resistance. Plant Dis. 84:962-972.
  10. Gale, L. R., Katan, T. and Kistler, H. C. 2003. The probable center of origin of Fusarium oxysporum f. sp. lycopersici VCG 0033. Plant Dis. 870:1433-1438.
  11. He, X., Miyasaka, S., Fitch, M., Moore, P. and Zhu, Y. 2008. Agrobacterium tumefaciens-mediated transformation of taro (Colocasia esculenta (L.) Schott) with a rice chitinase gene for improved tolerance to a fungal pathogen Sclerotium rolfsii. Plant Cell Rep. 27:903-909. https://doi.org/10.1007/s00299-008-0519-8
  12. Hung, C. and Lindout, P. 1997. Screening for resistance in wild Lycopersicon species to Fusarium oxysporum f. sp. lycopersici race 1 and race 2. Euphytica 93:145-153. https://doi.org/10.1023/A:1002943805229
  13. Hussain, I. 2008. Agrobacterium mediated gene transformation in potato by using rice chitinase gene. Ph.D. thesis. Pir Mehar Ali Shah Arid Agriculture University, Rawalpindi, Pakistan.
  14. Ignacimuthu, S. and Ceasar, S. A. 2012. Development of transgenic finger millet (Eleusine coracana (L.) Gaertn.) resistant to leaf blast disease. J. Biosci. 37:135-147. https://doi.org/10.1007/s12038-011-9178-y
  15. Jabeen, N., Bushra, M., Chaudhry, Z., Rashid, H. and Gulfraz, M. 2009. Study of the factors affecting Agrobacterium mediated gene transformation in tomato (Lycopersicon esculentum Mill.) cv. Riogrande using rice chitinase (cht-3) gene. Pak. J. Bot. 41:2605-2614.
  16. Jongedijk, E., Tigelaar, H., Van, R. C., Bres-Vloemans, A., Dekker, I., Van-den-Elzen, M., Cornelissen, C. and Melchers, S. 1995. Synergistic activity of chitinases and $\beta$-1,3-glucanases enhances fungal resistance in transgenic tomato plants. Euphytica 85:173-180. https://doi.org/10.1007/BF00023946
  17. Karasuda, S., Tanaka, S., Kajihara, H., Yamamoto, Y. and Koga, D. 2003. Plant chitinase as a possible biocontrol agent for use instead of chemical fungicides. Bioscience Biotech. Biochem. 67:221-224. https://doi.org/10.1271/bbb.67.221
  18. Kishimoto, K., Nishizawa, Y., Tabei, Y., Ibi, T., Nakajima, M. and Akutsu, K. 2002. Detailed analysis of rice chitinase gene expression in transgenic cucumber plants showing different levels of disease resistance to gray mold (Botrytis cinerea). Plant Sci. 162:655-662. https://doi.org/10.1016/S0168-9452(01)00602-1
  19. Kishimoto, K., Nishizawa, Y., Tabei, Y., Nakajima, M., Hibi, T. and Akutsu, K. 2004. Transgenic cucumber expressing an endogenous class III chitinase gene has reduced symptoms from Botrytis cinerea. J. Gen. Plant Pathol. 314-320.
  20. Kumar, S., Kumar, B., Sharma, K. and Devi, P. 2004. Gene transformation of pigeonpea with rice chitinase gene. Plant. Breed. 123:485-489. https://doi.org/10.1111/j.1439-0523.2004.01028.x
  21. Lin, W., Lu, C., Wu, J., Cheng, M., Lin, Y., Yang, N., Black, W., Green, S., Wang, J. and Cheng, C. 2004. Transgenic tomato plants expressing the Arabidopsis NPR1 gene display enhanced resistance to a spectrum of fungal and bacterial diseases. Transgen. Res. 13:567-581. https://doi.org/10.1007/s11248-004-2375-9
  22. Maziah, M., Sareeramanan, S., Paud, A. and Sariah, M. 2007. Production of transgenic banana cultivar, Rastali (AAB) via Agrobacterium-mediated transformation with rice chitinase gene. J. Plant Sci. 5:504-517.
  23. Mitani, N., Kobayashi, S., Nishizawa, Y., Takeshi, K. and Matsumoto, R. 2006. Transformation of trifoliate orange with rice chitinase gene and use of the transformed plant as a rootstock. Sci. Horticul. 108:439-441. https://doi.org/10.1016/j.scienta.2006.02.006
  24. Nandakumar, R., Babu, S., Kalpana, K., Raguchander, T., Balasubramanian, P. and Samiyappan, R. 2007. Agrobacterium mediated transformation of indica rice with chitinase gene for enhanced sheath blight resistance. Biol. Plant. 51:142-148. https://doi.org/10.1007/s10535-007-0027-7
  25. Nishizawa, Y., Kawakami, A., Hibi, T., He, D., Shibuya, N. and Minami, E. 1999. Regulation of the chitinase gene expression in suspension cultured rice cells by N-acetylchitooligosacchrides; differences in the signal transduction pathways leading to the activation of elicitor-responsive genes. Plant Mol. Biol. 39:907-914. https://doi.org/10.1023/A:1006161802334
  26. Osuinde, M. I., Aluya, E. I. and Emoghene, A. O. (2002). Control of Fusarium wilt of tomato (Lycopersicon esculentum Mill.) by Trichoderma species. Acta Phytopathologica et Entomologica Hungarica. 37:47-55. https://doi.org/10.1556/APhyt.37.2002.1-3.6
  27. Pandey, K. K., Pandey, P. K., Kallo, G. and Banerjee, M. K. 2003.Resistance to early blight of tomato with respect to various parameters of disease epidemics. J. Gen. Plant Pathol. 69:364-371. https://doi.org/10.1007/s10327-003-0074-7
  28. Parashina, V., Serdobinksii, A., Kalle, G., Lavrova, V., Avetisov, A., Lunin, G. and Naroditski, V. 2000. Genetic engineering of oilseed rape and tomato plants expressing a radish defensin gene. Russ. J. Plant Physiol. 47:417-423.
  29. Prasad, K., Bhatnagar-Mathur, P., Waliyar, F. and Sharma, K. K. 2013. Overexpression of a chitinase gene in transgenic peanut confers enhanced resistance to major soil borne and foliar fungal pathogens. J. Plant Biochem. Biotechnol. 22:222-233. https://doi.org/10.1007/s13562-012-0155-9
  30. Punja, Z. 2001. Genetic engineering of plants to enhance resistance to fungal pathogens-a review of progress and future prospects. Can. J. Plant Pathol. 23:216-235. https://doi.org/10.1080/07060660109506935
  31. Song, F. and Goodman, R. 2001. Molecular biology of disease resistance in rice. Physiol. Mol. Plant Pathol. 59:1-11. https://doi.org/10.1006/pmpp.2001.0353
  32. Shishido, M., Miwa, C., Usami, T., Amemiya, Y. and Johnson, K. 2005. Biological control efficiency of Fusarium wilt of tomato by nonpathogenic Fusarium oxysporum Fo-B2 in different environments. Phytopathology 95:1072-1080. https://doi.org/10.1094/PHYTO-95-1072
  33. Tabaeizadeh, Z., Agharbaoui, Z., Harrak, H. and Poysa, V. 1999. Transgenic tomato plants expressing a Lycopersicon chilensechitinase gene demonstrate improved resistance to Verticilliumdahliae race 2. Plant Cell Rep. 19:197-202. https://doi.org/10.1007/s002990050733
  34. Tabei, Y., Kitade, S., Nishizawa, Y., Kikuchi, N., Kayano, T., Hibi, T. and Akustu, K. 1998. Transgenic cucumber plants harboring a rice chitinase gene exhibit enhanced resistance to gray mold (Botrytis cinerea). Plant Cell Rep. 17:159-164. https://doi.org/10.1007/s002990050371
  35. Takahashi, W., Masahiro, F., Miura, Y., Komatsu, T., Nishizawa, Y., Hibi, T. and Takamizo, T. 2005. Increased resistance to crown rust disease in transgenic Italian ryegrass (Loliummultiflorum Lam.) expressing the rice chitinase gene. Plant Cell Rep. 23:811-818. https://doi.org/10.1007/s00299-004-0900-1
  36. Thomzik, E., Stenzel, K., Stocker, R., Schreier, H., Hain, R. and- Stahl, J. 1997. Synthesis of a grapevine phytoalexins in transgenic tomatoes (Lycopersicon esculentum Mill.) conditions resistance against Phytopthora infestans. Physiol. Mol. Plant Pathol. 51:265-278. https://doi.org/10.1006/pmpp.1997.0123
  37. Vakalounakis, D. J. 1983. Evaluation of tomato cultivars for resistance to Alternaria blight. Ann. Appl. Biol. 102:138-139.
  38. Van-den-Elzen, M., Jongedijk, E., Melchers, S. and Cornelissen, C. 1993. Virus and fungal resistance: from laboratory to field. Philos. Trans. R. Soc. Lond. B Biol. Sci. 342:271-278. https://doi.org/10.1098/rstb.1993.0157
  39. Watterson, C. 1986. Diseases, the tomato crops. Atherton and Radich Ed. Champan and Hall Ltd, New York. 461-462.
  40. Yamamoto, T., Iketani, H., Leki, H., Nishizawa, Y., Notsuka, K., Hibi, T., Hayashi, T. and Matsuta, N. 2000. Transgenic grapevine plants expressing a rice chitinase with enhanced resistance to fungal pathogens. Plant Cell Rep. 19:639-646. https://doi.org/10.1007/s002999900174

Cited by

  1. Expression studies of chitinase gene in transgenic potato against Alternaria solani vol.128, pp.3, 2017, https://doi.org/10.1007/s11240-016-1134-y
  2. Beyond just being foot soldiers – osmotin like protein ( OLP ) and chitinase ( Chi11 ) genes act as sentinels to confront salt, drought, and fungal stress tolerance in tomato vol.132, 2016, https://doi.org/10.1016/j.envexpbot.2016.08.007
  3. Novel Chitinase Gene LOC_Os11g47510 from Indica Rice Tetep Provides Enhanced Resistance against Sheath Blight Pathogen Rhizoctonia solani in Rice vol.8, 2017, https://doi.org/10.3389/fpls.2017.00596
  4. Genetic Engineering: A Possible Strategy for Protein–Energy Malnutrition Regulation 2017, https://doi.org/10.1007/s12033-017-0033-8
  5. The components of rice and watermelon root exudates and their effects on pathogenic fungus and watermelon defense vol.11, pp.6, 2016, https://doi.org/10.1080/15592324.2016.1187357
  6. Antifungal activity of chitinase II against Colletotrichum falcatum Went. causing red rot disease in transgenic sugarcane vol.42, pp.13036092, 2018, https://doi.org/10.3906/biy-1709-17
  7. QTL-seq and marker development for resistance to Fusarium oxysporum f. sp. niveum race 1 in cultivated watermelon vol.38, pp.11, 2018, https://doi.org/10.1007/s11032-018-0896-9
  8. Application of molecular and biotechnological techniques in plant disease management: A review vol.17, pp.31, 2018, https://doi.org/10.5897/AJB2018.16532