DOI QR코드

DOI QR Code

A Permeable Wedge Crack in a Piezoelectric Material Under Antiplane Deformation

면외변형하의 압전재료에 대한 침투 쐐기균열

  • Received : 2015.04.27
  • Accepted : 2015.06.01
  • Published : 2015.09.01

Abstract

In this study, we analyze the problem of wedge cracks, which are geometrically unsymmetrical in transversely piezoelectric materials. A single concentrated antiplane mechanical load and inplane electrical load are applied at the point of the wedge surface, while one concentrated antiplane load is applied at the crack surface. The crack surfaces are considered as permeable thin slits, where both the normal component of electric displacement and the electric potential are assumed to be continuous across these slits. Using Mellin transform method, the problem is formulated and the Wiener-Hopf equation is derived. By solving the equation, the solution is obtained in a closed form. The intensity factors of the stress and the electric displacement are obtained for any crack length as well as inclined and wedge angles. Based on the results, the intensity factors are independent of the applied electric loads. The electric displacement intensity factor is always dependent on that of stress intensity factor, while the electric field intensity factor is zero. In addition, the energy release rate is computed. These solutions can be used as fundamental solutions which can be superposed to arbitrary electromechanical loadings.

횡등방성 압전재료에 기하학적 비대칭인 쐐기균열문제를 해석하였다. 기계적 집중면외하중과 전기적 집중 면내하중이 쐐기표면 점에 작용하고 있고, 반면에 균열면 한점에는 기계적 집중하중만 작용한다. 균열면은 침투형 얇은 슬릿으로 가정하여, 전기변위의 수직성분 및 전위가 균열면을 가로질러 연속으로 두었다. Mellin 변환을 사용하여 문제를 수식화하고, Wiener-Hopf 식을 유도하였다. 이 식을 풀므로써 폐형으로 주어지는 해를 얻었다. 임의 균열길이나 경사각, 쐐기각에 대해서도 적용이 가능한 응력 및 전기변위 강도계수를 구하였다. 장의 강도계수들은 전기적 하중에는 무관하고, 전기변위강도계수는 응력강도계수만의 함수로 표현되었다. 전기장 강도계수는 영으로 계산되었다. 또한 에너지방출률을 얻었다. 이 해는 중첩에 의하여 임의로 분포하는 전기기계하중문제에 대한 해를 제공하는 기본해로 사용될 수 있다.

Keywords

References

  1. Parton, V. Z., 1976, "Fracture Mechanics of Piezoelectric Materials," Acta Astronautica, Vol. 3, pp. 671-683. https://doi.org/10.1016/0094-5765(76)90105-3
  2. Pak, Y. E., 1990, "Crack Extension Force in a Piezoelectric Materials," Journal of Applied Mechanics, Vol. 57, pp. 647-653. https://doi.org/10.1115/1.2897071
  3. Suo, Z., Kuo, C. -M., Barnett, D. M. and Willis, J. R., 1992, "Frtacture Mechanics for Piezoelectric Ceramic," J. Mechanics Physics Solids, Vol. 40, pp. 739-765. https://doi.org/10.1016/0022-5096(92)90002-J
  4. Shindo, Y., Tanaka, K. and Narita, F., 1997, "Singular Stress and Electric Fields of a Piezoelectric Ceramic strip With a Finite Crack Under Longitudinal Shear," Acta Mechanica, Vol. 120, pp. 31-45. https://doi.org/10.1007/BF01174314
  5. Kwon, J. H., Kwon, S. M., Shin, J. W. and Lee, K. Y., 2000, "Determination of Intensity Factors in Piezoelectric Ceramic Strip with Impermeable Crack," Trans. Korean Soc. Mech. Eng. A, Vol. 24, No. 6, pp. 1601-1607. https://doi.org/10.22634/KSME-A.2000.24.6.1601
  6. Shin, J. W., Kwon, S. M. and Lee, K. Y., 2001, "Eccentric Crack in a Piezoelectric Strip under Electro-Mechanical Loading," KSME International Journal, Vol. 15, No. 1, pp. 21-25. https://doi.org/10.1007/BF03184794
  7. Kwon, J. H., 2004, "Central Crack in a Piezoelectric Disk," KSME International Journal, Vol. 18, No. 9, pp. 1549-1558. https://doi.org/10.1007/BF02990369
  8. Choi, S. T. and Earmme, Y. Y., 1998, "Antiplane Problem of Interfacial Circular-Arc Cracks in Transversely Isotropic Piezoelectric Media," Trans. Korean Soc. Mech. Eng. A, Vol. 22, No. 5, pp. 868-876.
  9. Zhang, T.-Y and Tong, P., 1996, "Fracture Mechanics for a Mode III Crack in a Piezoelectric material," Int. J. Solids Structures, Vol. 33, No.3, pp. 343-359. https://doi.org/10.1016/0020-7683(95)00046-D
  10. Gao, C.-F, Wang, M.-Z., 2001, "General Treatment of Mode III Interfacial Crack Problems in Piezoelectric Materials," Archieve of Applied Mechanics, Vol. 71, pp. 296-306. https://doi.org/10.1007/s004190000135
  11. Li, X. -F. and Fan, T. -Y., 2001, "Mode-III Interface Edge Crack Between Two Bonded Quarter-Planes of Dissimilar Piezoelectric Materials," Archieve of Applied Mechanics, Vol. 71, pp. 703-714. https://doi.org/10.1007/s004190100175
  12. Li, X. -F. and Tang, G. -J., 2002, "Antiplane Permeable Edge Cracks in a Piezoelectric Strip of Finite Width," Int. Journ. of Fracture, Vol. 115, L35-L40. https://doi.org/10.1023/A:1022690501129
  13. Choi, S. R., 2008, "Green's Function of Edge Crack in Transversely Isotropic Piezoelectric Material Under Anti-Plane Loads," Trans. Korean Soc. Mech. Eng. A, Vol. 32, No. 1, pp. 43-53. https://doi.org/10.3795/KSME-A.2008.32.1.043
  14. Wu, X.-F., Cohen, S. and Dzenis, Y. A., 2003, "Screw Dislocation Interacting with Interfacial and Interface Cracks in Piezoelectric Bimaterials," International Journal of Engineering Science, Vol. 41, No. 7, pp. 667-682. https://doi.org/10.1016/S0020-7225(02)00155-6
  15. Wu, X.-F. and Dzenis, Y. A., 2002, "Screw Dislocation Interacting with an Interfacial Edge Crack Between Two Bonded Dissimilar Piezoelectric Wedges," International Journal of Fracture, Vol. 117, L9-L14. https://doi.org/10.1023/A:1022640722604
  16. Choi, S. R., Sah J.Y. and Jeong, J.T., 2015, "Inclined Edge Crack in a Piezoelectric Material Under Anti-Plane Loads," Trans. Korean Soc. Mech. Eng. A, Vol. 39, No. 6, pp. 589-596. https://doi.org/10.3795/KSME-A.2015.39.6.589
  17. Noble, B., 1958, Methods Based on the Wiener-Hopf Technique, Pergamon Press, London.
  18. Gradshteyn, I. S. and Ryzhik, I. M., 2007, Table of Integrals, Series, and Products, 7th Ed., Academic Press, New York.
  19. Hwang, E. H., Choi S. R. and Earmme Y. Y., 1992, "Inclined Edge Crack in Two Bonded Elastic Quarter Planes Under Out-of-Plane Loading," Int. Journ. of Fracture, Vol. 56, R39-R49. https://doi.org/10.1007/BF00012333

Cited by

  1. Asymmetric impermeable wedge crack in a piezoelectric material under anti-plane deformation vol.32, pp.10, 2018, https://doi.org/10.1007/s12206-018-0924-z