Calculation of Limit Temperature on H-Beam Flexural Member Through the Thermal Stress Analysis under the Lateral Load

재하된 H형강 휨재의 열응력해석을 이용한 한계온도 산정

  • Yoon, Sung Kee (Dept. of Architectural Engineering, Pusan National University) ;
  • Lee, Chy Hyoung (Research Institute of Industrial Technology, Pusan National University) ;
  • Koo, Bon Hoon (Dept. of Architectural Engineering, Pusan National University)
  • 윤성기 (부산대학교, 건축공학과) ;
  • 이치형 (부산대학교, 생산기술연구소) ;
  • 구본훈 (부산대학교, 건축공학과)
  • Received : 2015.02.27
  • Accepted : 2015.07.22
  • Published : 2015.08.27


The domestic fire resistance performance test is conducted as a prescriptive design method such as quality test. In quality test there are 2 methods, unloaded fire resistance test and fire resistance test under load. In realistic, these tests, however, have problems with expense, time and diversity of structure. This study reviewed fire resistance performance of H-beam flexural member by thermal stress analysis using finite element ABAQUS program. This research is for the performance-based design reviewing applicability of domestic standard. As a result of this study, limit temperatures per each load ratio provied for proper performance of fire resistancy.


Supported by : 한국연구재단


  1. 국토해양부 고시 제2010-331호(2010) 내화구조의 인정 및 관리기준, 국토해양부. (Ministry of Land Infrastructure and Transport Notification No.2010-331 (2010) Fireproof Structure Recognition and Management Standards, Ministry of Land Infrastructure and Transport (in Korean).
  2. KS F 2257-1 (2014) 건축구조 부재의 내화시험 방법-일반 요구사항, 한국산업표준. (KS F 2257-1 (2014) Methods fire Resistance Test for Elements of Building Construction - General requirements, Korea Standard Association (in Korean).)
  3. KS F 2257-6 (2014) 건축구조부재의 내화시험방법-보의 성능조건, 한국산업표준. (KS F 2257-6 (2014) Methods Fire Resistance Test for Elements of Building Construction - Specific Requirements for Beams, Korea Standard Association (in Korean).)
  4. KS F 2848 (2010) 단면형상계수에 따른 구조용강재의 내화피복 두께 산정방법, 한국산업표준. (KS F 2848 (2010) Method of Calculating Fire Protective Thickness of Structural Steel According to Section Factor, Korea Standard Association (in Korean).)
  5. 권인규(2010) 강구조 부재의 표면온도 산정 및 내화피복두께에 관한 연구, 2010년도 한국화재소방학회논문집, 한국화재소방학회, 제24권, 제4호, pp.55-61. (Kwon, I.K. (2010) Study on the Surface Temperature and Fire Protective Thickness for Structural Steel Elements at Fire Conditions, Journal of Korean Institute of Fire Science and Engineering, KIFSE, Vol.24, No.4, pp.55-61 (in Korean).)
  6. 강성덕, 남상철, 김인기, 민병직(2009) 고온에서의 Steel H-형강 보의 처짐 및 파괴온도, 2009년도 대한건축학회 학술발표대회논문집, 대한건축학회, 제29권, 제1호, pp.141-144. (Kang, S.D., Nam, S.C., Kim, I.K., and Min, B.J. (2009) Mid-span Deflection and Failure Temperature of H-shaped Steel Beam in High Temperature, Proceedings of Annual Conference Architectural Institute of Korea, AIK, Vol.29, No.1, pp.141-144 (in Korean).)
  7. 김동익, 김형준, 이준철, 김화중(2005) 강구조 부재의 내화성능설계를 위한 평가시스템 개발, 2005년도대한건축학회학술발표대회논문집, 대한건축학회, 제25권, 제1호, pp. 615-618. (Kim, D.I., Kim, H.J., Lee, J.C., and Kim, W.J. (2005) The Development of Estimation System for Fire Endurance Rating Design of Steel Structure Member, Proceedings of Annual Conference Architectural Institute of Korea, AIK, Vol.25, No.1, pp.615-618 (in Korean).)
  8. 김성배, 김상섭, 유덕수, 최승관(2013) 신형상 U형 하이브리드 합성보의 내화성능에 관한 연구, 한국강구조학회논문집, 한국강구조학회, 제25권, 제4호, pp.379-388. (Kim, S.B., Kim, S.S., Ryu, D.S., and Choi, S.K. (2013) Fire Resistance of U-shape Hybrid Composite Beam, Journal of Korean Society of Steel Construction, KSSC, Vol.25, No.4, pp.379-388 (in Korean).)
  9. 안재권, 이철호(2014) 재하가열시험에 의한 무내화피복 콘크리트충전 각형강관기둥의 내화성능평가, 한국강구조학회논문집, 한국강구조학회, 제26권, 제4호, pp.323-334. (Ahn, J.K. and Lee, C.H. (2014) Evaluation of Fire Resistance of Unprotected Concrete-filled Rectangular Steel Tubular Columns under Axial Loading, Journal of Korean Society of Steel Construction, KSSC, Vol.26, No.4, pp.323-334 (in Korean).)
  10. 안재권, 이철호(2015) 무피복 합성보의 내화성능에 대한 실험 및 해석적 연구, 한국강구조학회논문집, 한국강구조학회, 제27권, 제2호, pp.143-153. (Ahn, J.K. and Lee, C.H. (2015) Experimental and Numerical Study of Fire Resistance of Composite Beams, Journal of Korean Society of Steel Construction, KSSC, Vol.27, No.2, pp.143-153 (in Korean).)
  11. ABAQUS (2010) ABAQUS/CAE User's Manual Version 6.10, Hibit, Karlsson & Sorensen, Inc.
  12. ABAQUS (2013) ABAQUS Analysis User's Manual Version 6.10, Hibit, Karlsson & Sorensen, Inc.
  13. ABAQUS (2013) ABAQUS Theory Manual Version 6.10, Hibit, Karlsson & Sorensen, Inc.
  14. EC3, Eurocode 3 (1995) Design of Steel Structures, ENV 1993-1-2 : General Rules - Structural Fire Design, European Committee for Standardization, Bressels, Belgium.
  15. BSI (1990) Structural Use of Steelwork in Building, BS 5950, Part 8 code of Practice for Fire Resistant Design, British Standards Institution, UK.
  16. Carino, N.J. and Stames, M.A. (2005) Fedral Building and Fire Safety Investigation of the World Trade Center Disaster-Passive Fire Protection, NIST(National Institute of Standards and Technology).
  17. Seputro, J., Moss, P., and Buchanan, A.H. (2004) Effect of Support Conditions on Steel Beams Exposed of Fire, University of canterbury Christchurch, New Zealand.
  18. Buchanan, A., Moss, P., Seputro, J., and Welsh, R. (2004) The Effect of Stress-Strain Relationships on the Fire Performance of Steel Beams, Journal of Structural Engineering, Vol.26, pp.1505-1515.

Cited by

  1. Finite Element Analysis of H-Shaped Compressive Member Exposed High Temperatures vol.30, pp.5, 2016,
  2. Estimation of Minimum Design Effective Temperature for Steel Box Girder Bridges Considering Asphalt Thickness of Concrete Deck vol.31, pp.1, 2019,