DOI QR코드

DOI QR Code

Analysis of Lateral Behavior of PSC Bridge Girders under Wind Load During Construction

시공 중 풍하중에 의한 PSC 교량 거더의 횡방향 거동 해석

  • Lee, Jong-Han (Department of Civil Engineering, Daegu University) ;
  • Kim, Kyung Hwan (Department of Civil Engineering, Daegu University) ;
  • Cho, Baiksoon (Department of Civil and Environmental Engineering, Inje University)
  • 이종한 (대구대학교 토목공학과) ;
  • 김경환 (대구대학교 토목공학과) ;
  • 조백순 (인제대학교 건설환경공학부)
  • Received : 2014.12.15
  • Accepted : 2015.03.03
  • Published : 2015.08.30

Abstract

The span-lengthening of PSC I girder has increased the risk of lateral instability of the girder with the increases in the aspect ratio and self-weight of the girder. Recently, collapses of PSC I girder during construction raise the necessity of evaluating the lateral instability of the girder. Thus, the present study evaluated the lateral behavior and instability of PSC I girders under wind load, regarded as one of the main causes of the roll-over collapse during construction. Lateral instability of the girder is mainly dependent on the length of the girder and the stiffness of the support. The analysis results of this study showed the decrease in the critical wind load and the increase in the critical deformation and angle of the girder, leading to the lateral instability of the girder. Finally, this study proposed analytical equations that can predict the critical amount of wind load and lateral deformation of the girder, which would provide quantitative management values to maintain lateral stability of PSC I girder during construction.

PSC I 거더의 장경간화는 단면의 세장비와 자중의 영향 등을 증가시켜 거더의 횡적 불안정에 대한 위험성을 높였다. 특히 최근에는 시공 중 거더의 전도 붕괴사고가 증가하고 있어 거더의 횡적 불안정성에 대한 평가 기술이 절실히 요구되고 있다. 따라서, 본 연구에서는 시공 중 전도 붕괴의 한 원인으로 판단되어지고 있는 풍하중에 대하여 PSC I 거더의 횡방향 거동 특성과 안정성을 평가하였다. 거더의 횡방향 불안정성은 주로 거더의 길이와 받침의 강성 변화에 의해 영향을 받는다. 해석결과에 의하면 거더의 경간장이 증가함에 따라 거더의 횡적 불안정성을 유발할 수 있는 임계 풍하중은 감소하고, 거더의 변형과 회전각, 받침의 회전각은 모두 증가하였다. 최종적으로 시공 시 PSC I 거더의 임계 풍하중과 임계 횡변위량을 계산할 수 있는 해석식을 제시함으로써, 시공 시 거더의 횡적 안정성을 유지하기 위한 정량적 관리 수치를 제공할 수 있으리라 판단된다.

Keywords

References

  1. KHC (Korea Highway Corporation), "Optimum design and standardization of the PSC I girder bridge", Report No. RT ST-05-05, 2005 (in Korean).
  2. Park, Y. H. and Kim, W. J., "Extending span range of the standard PSC beam girder bridges with shallow girder depth", Magazine of the Korea Concrete Institute, Vol.20, No.3, 2008, pp.20-25 (in Korean). https://doi.org/10.22636/MKCI.2008.20.3.20
  3. Jeon, S. W., Choi, M. S., and Kim, Y. J., "Assessment for extending span ranges of PSC girder bridges", Proceedings of the Korea Concrete Institute Spring 2009 Conference, Vol.21, No.5, pp.117-118 (in Korean).
  4. Lee, J. H., "Behavior of precast prestressed concrete bridge girders involving thermal effects and initial imperfections during construction", Engineering Structures, Vol.42, 2012, pp.1-8. https://doi.org/10.1016/j.engstruct.2012.04.003
  5. Lee, J. H. and Kalkan, I., "Experimental and analytical investigation of lateral-torsional buckling of RC beams with geometric imperfections", Applied Mechanics and Materials, Vol.479-480, 2014, pp.1133-1138.
  6. ENR (Engineering News-Record), Arizona bridge collapse will lead to new shoring rules, McGraw-Hill Construction, 2007, http://enr.construction.com/news/transportation/archives/071205a.asp.
  7. Lee, J. H., "Investigation of extreme environmental conditions and design thermal gradients during construction for prestressed concrete bridge girders", ASCE Journal of Bridge Engineering, Vol.17, No.3, 2012, pp.547-556. https://doi.org/10.1061/(ASCE)BE.1943-5592.0000277
  8. Lee, J. H. and Kalkan, I., "Analysis of thermal environmental effects on precast, prestressed concrete bridge girders: temperature differentials and thermal deformations", Advances in Structural Engineering, Vol.15, No.3, 2012, pp.447-459. https://doi.org/10.1260/1369-4332.15.3.447
  9. KRTA (Korea Road & Transportation Association), Highway bridge standard specifications, sponsored by Ministry of Land, Transport and Maritime Affairs, 2005 (in Korean).
  10. KTEA (Korea Temporary Equipment Association), Standard specification for temporary construction, sponsored by Ministry of Land, Transport and Maritime Affairs, 2006 (in Korean).
  11. PCI (Precast/Prestressed Concrete Institute), PCI bridge design manual, Chicago, IL, 2003.
  12. Yoon, H., Kim, Y., Cho, C., and Kwahk, I., "Evaluation of the stiffness of elastomeric bearings", KSCE 2007 Convention, Korea Society of Civil Engineers, Vol.2007, No.10, 2007, pp.88-91 (in Korean).
  13. KS F 4420, Steel-laminated elastomeric bearings for bridge, Korean Standards Association, 1998 (in Korean).
  14. Gent, A. N. and Lindley, P. B., "The compression of bonded rubber blocks", Proceedings of the Institution of Mechanical Engineers, Vol.173, pp.111-122.
  15. KRTA (Korea Road & Transportation Association), Highway bridge design code, sponsored by Ministry of Land, Transport and Maritime Affairs, 2010 (in Korean).
  16. AASHTO (American Association of State Highway and Transportation Officials), Standard specifications for highway bridgs, 17th Edition, 2002.
  17. MIDAS/Gen (2013). General structural design system. Version 8.0, Midas Information Technology Co. Ltd., http://www.midasit.com.
  18. KRTA (Korea Road & Transportation Association), Highway bridge handbook, 5th Edition, sponsored by Ministry of Land, Transport and Maritime Affairs, 2008 (in Korean).