DOI QR코드

DOI QR Code

Impacts of Argo temperature in East Sea Regional Ocean Model with a 3D-Var Data Assimilation

동해 해양자료동화시스템에 대한 Argo 자료동화 민감도 분석

  • KIM, SOYEON (Global Environment System Research Division, National Institute of Meteorological Research) ;
  • JO, YOUNGSOON (Korea Institute of Atmospheric Prediction Systems) ;
  • KIM, YOUNG-HO (Physical Oceanography Division, Korea Institute of Ocean Science & Technology) ;
  • LIM, BYUNGHWAN (Global Environment System Research Division, National Institute of Meteorological Research) ;
  • CHANG, PIL-HUN (Global Environment System Research Division, National Institute of Meteorological Research)
  • 김소연 (국립기상과학원 지구환경시스템연구과) ;
  • 조영순 ((재)한국형수치예보모델개발사업단) ;
  • 김영호 (한국해양과학기술원 물리연구본부) ;
  • 임병환 (국립기상과학원 지구환경시스템연구과) ;
  • 장필훈 (국립기상과학원 지구환경시스템연구과)
  • Received : 2015.06.11
  • Accepted : 2015.08.15
  • Published : 2015.08.31

Abstract

Impacts of Argo temperature assimilation on the analysis fields in the East Sea is investigated by using DAESROM, the East Sea Regional Ocean Model with a 3-dimensional variational assimilation module (Kim et al., 2009). Namely, we produced analysis fields in 2009, in which temperature profiles, sea surface temperature (SST) and sea surface height (SSH) anomaly were assimilated (Exp. AllDa) and carried out additional experiment by withdrawing Argo temperature data (Exp. NoArgo). When comparing both experimental results using assimilated temperature profiles, Root Mean Square Error (RMSE) of the Exp. AllDa is generally lower than the Exp. NoArgo. In particular, the Argo impacts are large in the subsurface layer, showing the RMSE difference of about $0.5^{\circ}C$. Based on the observations of 14 surface drifters, Argo impacts on the current and temperature fields in the surface layer are investigated. In general, surface currents along the drifter positions are improved in the Exp. AllDa, and large RMSE differences (about 2.0~6.0 cm/s) between both experiments are found in drifters which observed longer period in the southern region where Argo density was high. On the other hand, Argo impacts on the SST fields are negligible, and it is considered that SST assimilation with 1-day interval has dominant effects. Similar to the difference of surface current fields between both experiments, SSH fields also reveal significant difference in the southern East Sea, for example the southwestern Yamato Basin where anticyclonic circulation develops. The comparison of SSH fields implies that SSH assimilation does not correct the SSH difference caused by withdrawing Argo data. Thus Argo assimilation has an important role to reproduce meso-scale circulation features in the East Sea.

동해 해양자료동화시스템(DA-ESROM; Kim et al., 2009)을 이용하여 Argo 관측망이 해양 분석장에 미치는 영향에 대해 살펴보았다. 본 연구에서는 2009년을 연구기간으로 하여 수온 프로파일, 해수면 온도, 그리고 해수면 고도 자료를 동화하여 분석장을 생산하고(Exp. AllDa), 이를 Argo 수온 자료를 제외한 실험(Exp. NoArgo) 결과와 비교하였다. 동해 수온 프로파일 관측자료와 두 실험결과와의 평균 제곱근 오차(Root Mean Square Error; RMSE)를 살펴본 결과, Exp. AllDa의 결과에서 Exp. NoArgo에 비해 표층 이하부터 전반적으로 낮은 RMSE가 나타났고, 특히 수심 약 100 m 부근에서 약 $0.5^{\circ}C$의 RMSE 차이(Exp. AllDa - Exp. NoArgo)를 보이는 등 아표층 부근에서 Argo 수온 자료동화의 영향이 큰 결과를 보였다. 자료동화 과정에 독립적인 표류부이 관측자료와의 비교를 통해, Argo 수온 자료의 동화로 표층해류 정확도가 전반적으로 개선되는 것을 확인하였고, 특히 동해 중남부에서 상대적으로 장기 표류한 부이의 궤적을 따라 RMSE가 약 2.0~6.0 cm/s 정도 낮아졌다. 반면, 표층수온에 대해서는 Argo 수온자료의 동화효과는 약한 것으로 나타났고, 매일 동화되는 해수면 온도 자료의 영향이 지배적인 것으로 판단된다. 또한, 동해 해양자료동화시스템(DA-ESROM)은 일주일 간격으로 해수면 고도자료를 동화하지만, Argo 수온자료가 동화되지 않으면서 나타나는 해수면 고도 변화를 완전히 보정하지 못하는 것으로 나타났다. 실험결과, Argo 수온자료의 동화는 특히 야마토 분지 남서쪽의 시계방향 순환 등 동해 중남부 해역에서의 해수면 고도 재현성을 향상시키는데 큰 영향을 미치는 것으로 나타났다.

Keywords

References

  1. Balmaseda, M. and D. Anderson, 2009. Impact of initialization strategies and observations on seasonal forecast skill. Geophys. Res. Lett., 36:L01701.
  2. Cooper, M. and K. Haines, 1996. Altimetric assimilation with water property conservation. J. Geophys. Res., 101: 1059-1077. https://doi.org/10.1029/95JC02902
  3. Hirose, N., I. Fukumori, C.-H. Kim, and J.-H. Yoon, 2005. Numerical simulation and satellite altimeter data assimilation of the Japan Sea circulation, Deep Sea Research II, 52: 1442-1463.
  4. Hogan, P. J. and H.E. Hurlburt, 2000. Impact of upper ocean-topographical coupling and isopycnal outcropping in Japan/East Sea model with $1/8^{\circ}to\;1/64^{\circ}$ resolution. J. Phys. Oceanogr., 30: 2535-2561. https://doi.org/10.1175/1520-0485(2000)030<2535:IOUOTC>2.0.CO;2
  5. Hogan, P. J. and H.E. Hurlburt, 2006. Why do intrathermocline eddies form in the Japan/East Sea? A modeling perspective. Oceanography, 19(3): 134-143. https://doi.org/10.5670/oceanog.2006.50
  6. Huang Y.-P., L.J. Kao and F.-E. Sandnes, 2008. Efficient mining of salinity and temperature association rules from ARGO data. Expert Systems with Applications, 31(1-2): 59-68.
  7. Ichiye, T. 1984. Some problems of circulation and hydrography of the Japan Sea and the Tsushima Current. Ocean Hydrodynamics of the Japan and East China Seas, 15-54.
  8. Kim C.-H. and J.-H. Yoon, 1999. A numerical modeling of the upper and the intermediate layer circulation in the East Sea. J. Oceanogr., 55: 327-345. https://doi.org/10.1023/A:1007837212219
  9. Kim, J. H., H.-M Eom, J.-K. Choi, S.-M. Lee, Y.-H. Kim, and P.-H. Chang, 2015. Impacts of OSTIA sea surface temperature in regional ocean data assimilation system. J. Korean Society of Oceanogr., 20(1): 1-15.
  10. Kim, Y.H., K.-I. Chang, J.J. Park, S.K. Park, S.-H. Lee, Y.-G. Kim, K.T. Jung, and K. Kim, 2009. Comparison between a reanalyzed product by the 3-dimensional variational assimilation technique and observations in the Ulleung Basin of the East/Japan Sea. J. Mar. Syst. 78: 249-264. https://doi.org/10.1016/j.jmarsys.2009.02.017
  11. Large W.G., G. Danabasoglu, S.C. Doney and J.C. McWilliams, 1997. Sensitivity to surface forcing and boundary layer mixing in a global ocean model: annual-mean climatology. J. Phys. Oceanogr., 27: 2418-2447. https://doi.org/10.1175/1520-0485(1997)027<2418:STSFAB>2.0.CO;2
  12. Lea, D.J., M.J. Martin and P.R. Oke, 2014. Demonstrating the complementarity of observations in an operational ocean forecasting system. Quart. J. Roy. Meteor. Soc., 140: 2037-2049. https://doi.org/10.1002/qj.2281
  13. Lee H.J., J.-H. Yoon, H. Kawamura and H.-W. Kang, 2003. Comparison of RIAMOM and MOM in modeling the East Sea/Japan Sea circulation. Ocean and Polar Res., 25(3): 287-302. https://doi.org/10.4217/OPR.2003.25.3.287
  14. Manda, A, N. Hirose, and T. Yanagi, 2005. Feasible method for the assimilation of satellite-derived SST with an Ocean Circulation Model. J. Atmos. Oceanic Technol., 22: 746-756. https://doi.org/10.1175/JTECH1744.1
  15. Na, Y., Y. Isoda, K. Kim, Y.H. Kim and S.J. Lyu, 2009. Recent observations in the straits of the East/Japan Sea: A review of hydrography, currents and volume transports. J. Mar. Syst., 78: 200-205. https://doi.org/10.1016/j.jmarsys.2009.02.018
  16. National Institute of Meteorological Research (NIMR), 2010. Research for the Meteorological and Earthquake Observation Technology and Its Application (II). National Institute of Meteorological Research, Seoul, 204 pp.
  17. Pacanowski R., K. Dixon and A. Rosati, 1991. The GFDL Modular Ocean Model Users Guide, Version 1.0, GFDL Ocean Group Tech. Rep. No. 2. Geophysical Fluid Dynamics Laboratory/NOAA, Princeton University, Princeton, N.J. 08542.
  18. Roemmich, D. and W. B. Owens, 2000. The Argo Project: global ocean observations for the understanding and prediction of climate variability. Oceanography, 13: 45-50. https://doi.org/10.5670/oceanog.2000.33
  19. Weaver A. and Courtier P., 2001. Correlation modeling on the sphere using a generalized diffusion equation. Quart. J. Roy. Meteor. Soc., 127: 1815-1846. https://doi.org/10.1002/qj.49712757518
  20. Yoon, J.-H., 1982a. Numerical experiment on the circulation in the Japan Sea. Part I. Formation of the East Korean Warm Current. J. Oceanogr. Soc. Japan, 38: 43-51. https://doi.org/10.1007/BF02110289
  21. Yoon, J.-H., 1982b. Numerical experiment on the circulation in the Japan Sea. Part II. influence of seasonal variations in atmospheric conditions on the Tsushima Current. J. Oceanogr. Soc. Japan, 38: 81-94. https://doi.org/10.1007/BF02110294
  22. Yoon, J.-H., 1982c. Numerical experiment on the circulation in the Japan Sea. Part III. Mechanism of the nearshore branch of the Tsushima Current. J. Oceanogr. Soc. Japan, 38: 125-130. https://doi.org/10.1007/BF02110283
  23. Yoon. J.-H. and H. Kawamura, 2002. The formation and circulation of the intermediate water in the Japan Sea. J. Oceanogr., 58: 197-211. https://doi.org/10.1023/A:1015893104998

Cited by

  1. 고해상도 동해 연안 파랑예측모델 구축을 위한 통계적 규모축소화 방법 적용 vol.40, pp.3, 2019, https://doi.org/10.5467/jkess.2019.40.3.259