DOI QR코드

DOI QR Code

Study of Mechanism for Improving Tensile Elastic Modulus of Self-reinforced Composite

친환경 저비중 자기보강 복합소재 개발을 위한 공정 변수별 영향도 평가

  • Yun, Deok Woo (Advaced Materials Research Team, Hyundai Motor Company) ;
  • Kang, Hyun Min (Advaced Materials Research Team, Hyundai Motor Company)
  • Received : 2015.07.07
  • Accepted : 2015.08.31
  • Published : 2015.08.31

Abstract

Tensile properties of polypropylene based self-reinforced composites were investigated as a function of process variables of the double-belt lamination equipment such as pressure, temperature and cooling conditions. Elastic modulus was enhanced approximately 6 times from 0.2 to 1.2 GPa. The improvement mechanism was studied by identification of crystalline structure changes using DSC and XRD analysis. In addition, morphology change of self-reinforced composites was also investigated by SEM analysis in order to reveal the degree of impregnation.

폴리프로필렌 기반 자기보강 복합재는 기지재와 보강재가 동일한 소재로 구성되어 기존 섬유강화 복합재와 달리 섬유와 기지재의 분리없이 바로 재활용이 가능할 뿐 아니라 폴리프로필렌 수준까지 저 비중화가 가능한 고분자 복합재이다. 본 연구에서는 더블벨트 라미네이터 공정기술을 이용하여 압력, 온도, 냉각조건과 같은 공정 변수가 폴리프로필렌으로 제조된 자기보강 복합재의 인장 물성에 미치는 영향을 연구하였다. XRD, DSC를 이용하여 결정구조의 변화에 따라 인장 탄성계수는 0.2~1.2 GPa로 약 6배까지 향상되는 것을 확인하였다. SEM 분석을 통해 함침 정도를 확인함으로써 자기보강 복합재의 함침 후 형상 변화 또한 고찰하였다.

Keywords

References

  1. Capiati, N.J. and Porter, R.S., "The Concept of One Polymer Composites Modelled with high Density Polyethylene", Journal of Matterials Science, Vol. 10, 1975, pp. 1671-1677. https://doi.org/10.1007/BF00554928
  2. Stern, T., Teishev, A., and Marom, G., "Composites of Polyethylene Reinforced with Chopped Polyethylene Fibres: Effect of Transcrytalline Interphase" Composites Science and Technology, Vol. 57, 1997, pp. 1009-1015. https://doi.org/10.1016/S0266-3538(96)00128-5
  3. Pegoretti, A., Ashkar, M., Miglairesi, C., and Marom, G., "Relaxation Processes in Polyethylene Fibre-reinforced Polyethylene Composites" Composites Science and Technology, Vol. 60, 2000, pp. 1181-1189. https://doi.org/10.1016/S0266-3538(00)00024-5
  4. Cabrera, N., "Recyclable All-polypropylene Composites : Concept, Properties and Manufacturing", Technische Universiteit Eindhoven. 2004.
  5. Alcock, B., Cabrera, N., Barkoula, N., and Peijs, T., "Low Velocity Impact Performance of Recyclable All-polypropylene Composites", Composites Science and Technology, Vol. 66, 2006, pp. 1724-1737. https://doi.org/10.1016/j.compscitech.2005.11.010
  6. Cabrera, N., Reynolds, C.T., Alcock, B., and Peijs, T., "Non-isothermal Stamp Forming of Continuous Tape Reinforced Allpolypropylene Composite Sheet" Composites: Part A, Vol. 39, 2008, pp. 1455-1466. https://doi.org/10.1016/j.compositesa.2008.05.014
  7. Rojanapitayakorn, P., Mather, P.T., Goldberg, A.J., and Weiss, R.A., "Optically Transparent Self-reinforced Poly(ethylene terephthalate) Composites: Molecular Orientation and Mechanical Properties", Polymer, Vol. 46, 2005, pp. 761-773. https://doi.org/10.1016/j.polymer.2004.11.032
  8. Hine, P.J. and Ward, I.M., "Hot Compaction of Wove Nylon 6,6 Multifilaments" Journal of Matterials Science, Vol. 101, 2005, pp. 991-997.
  9. Benjamin Alcock, "Single Polymer Composites Based on Polypropylene: Processing and Properties", Queen Mary, University of London, UK, 2004.
  10. Parenteau, T. and Ausias, G., "Structure, Mechanical Properties and Modelling of Polypropylene for Different Degrees of Crystallinity", Polymer, Vol. 53, 2012, pp. 5873-5884. https://doi.org/10.1016/j.polymer.2012.09.053
  11. Raghavendra, R.H., Atul Dahiya, and Kamath, M.G., "Olefin Fiber", College of Engineering: UT Knoxville 2004.
  12. Jia, J. and Raabe, D., "Evolution of Crystallinity and of Crystallographic Orientation in Isotactic Polypropylene during Rolling and Heat Treatment", European Polymer Journal, Vol. 42, 2006, pp. 1755-1766. https://doi.org/10.1016/j.eurpolymj.2006.02.013