DOI QR코드

DOI QR Code

Estimation of System Damping Parameter Using Wavelet Transform

웨이블릿 변환에 의한 시스템 감쇠변수 평가

  • Received : 2015.02.23
  • Accepted : 2015.04.17
  • Published : 2015.09.01

Abstract

The estimation of system damping parameter of the response signal with lower natural frequency and higher damping parameter from free vibration is affected by the wavelet center frequency. This study discusses these considerations in the context of the wavelet's multi-resolution character and includes guidelines for selection of wavelet center frequency. The experiment with H-Beam and numerical examples with respect to three cases (i)single mode, (ii)separated modes and (iii)close modes demonstrate the validity of method to improve the accuracy of the estimated damping parameter. The localization of the corresponding scale for the total scales is determined by the natural frequency of the analysing mode and is affected by the wavelet center frequency. Thus, the reliability for the accuracy of the estimated damping parameter can be improved by the corresponding scale of the natural frequency for the analysing mode is localized at the half of the total scales.

본 연구에서는 웨이블릿 변환을 적용한 시스템 감쇠비 평가에 있어서 고유주파수가 저주파 영역에 속하고, 비교적 높은 감쇠비를 갖는 응답신호에 대하여 웨이블릿 기저함수의 중심주파수 영향을 분석하고자 하였다. 이를 위하여 단일 모드로 구성된 신호와 일정 주파수를 이격시킨 분리 중첩 모드 신호 및 모드 주파수 성분을 근접시킨 인접 중첩 모드 신호에 대하여 수치해석으로 분석하고, H-Beam을 통한 실내실험을 수행하였다. 분석하고자 하는 모드의 고유주파수는 전체 스케일에 대한 대응 스케일로서 고려되고, 이러한 대응 스케일의 위치는 웨이블릿 기저함수의 중심주파수에 영향을 받게 된다. 따라서 각 모드의 고유주파수에 대응되는 스케일이 전체 스케일의 1/2에 위치되도록 웨이블릿 기저함수의 중심주파수가 선택될 때 감쇠비 평가에 대한 신뢰성이 향상 될 것이다.

Keywords

References

  1. Chui, C. K. (1992), Wavelet Analysis and Its Applications: An Introduction to Wavelets, Academic Press, New York, 49-74.
  2. Curadelli, R. O., Riera, J. D., Ambrosini, D., and Amani, M. G. (2008), Damage Detection by Means of Structural Damping Identification, Engineering Structures, 30, 3497-3504. https://doi.org/10.1016/j.engstruct.2008.05.024
  3. Feldman, M. (1997), Non-linear Free Vibration Identification via The Hilbert Transform, Journal of Sound and Vibration, 208(3), 475-489. https://doi.org/10.1006/jsvi.1997.1182
  4. Hur, K., and Santoso, S. (2009), Estimation of System Damping Parameters Using Analytic Wavelet Transforms, IEEE Transactions on Power Delivery, 24(3), 1302-1309. https://doi.org/10.1109/TPWRD.2008.2002970
  5. Kijewski, T., and Kareem, A. (2003), Wavelet Transforms for System Identification in Civil Engineering, Computer-Aided Civil and Infrastructure Engineering, 18, 339-355. https://doi.org/10.1111/1467-8667.t01-1-00312
  6. Park, H. G. (2005), Application of Wavelet Transform in Estimating Structural Dynamic Parameters by Vehicle Loading Test, Journal of the Korea institute for structural maintenance inspection, KSMI, 9(2), 129-136, (in Korean).
  7. Paz, M. (1997), Structural Dynamics: Theory and Computation (Fourth Edition), Chapman & Hall, New York, 31-44.
  8. Sarparast, H., Ashory, M. R., Hajiazizi, M., Afzali, M., and Khatibi, M. M. (2014), Estimation of modal parameters for structurally damped systems using wavelet transform, European Journal of Mechanics A/Solids, 47, 82-91. https://doi.org/10.1016/j.euromechsol.2014.02.018
  9. Slavic, J., Simonovski, I., and Boltezar, M. (2003), Damping Identification Using a Continuous Wavelet Transform: Application to Real Data, Journal of Sound and Vibration, 262, 291-307. https://doi.org/10.1016/S0022-460X(02)01032-5