DOI QR코드

DOI QR Code

Numerical Analysis of Rail Noise Regarding Surface Impedance of Ground by Using Wavenumber Domain Finite and Boundary Elements

지면 임피던스를 고려한 레일 방사 소음의 파수영역 유한요소/경계요소 해석

  • Ryue, Jungsoo (School of Naval Architecture and Ocean Engineering, University of Ulsan) ;
  • Jang, Seungho (Korea Railroad Research Institute)
  • Received : 2015.02.16
  • Accepted : 2015.05.19
  • Published : 2015.08.31

Abstract

An important source of noise from railways is rolling noise caused by wheel and rail vibrations induced by acoustic roughness at the wheel-rail contact. In conventional approaches to predicting rail noise, the rail is regarded as placed in a free space so that the reflection from the ground is not included. However, in order to predict rail noise close to the rail, the effect of the ground should be contained in the analysis. In this study the rail noise reflected from the ground is investigated using the wavenumber domain finite element and boundary element methods. First, two rail models, one using rail attached to the rigid ground and one using rail located above rigid ground, are considered and examined to determine the rigid ground effect in terms of the radiation efficiency. From this analysis, it was found that the two models give considerably different results, so that the distance between the rail and the ground is an important factor. Second, an impedance condition was set for the ground and the effect of the ground impedance on the rail noise was evaluated for the two rail models.

철도 전동 소음은 철도에서 발생하는 대표적인 소음으로서 차륜과 레일의 음향 조도에 의해 가진 된 차륜 및 레일의 진동으로부터 발생한다. 철도 전동 소음 해석 시 레일 방사 소음은 자유 공간에 놓인 레일의 음향 방사 파워를 이용해 원거리에서 계산하므로, 일반적으로 소음원 모델에 지면 반사를 고려하지 않는다. 그러나 레일 주위의 근접 음장을 해석하고 저감 대책을 적용하기 위해서는 지면에 의한 음파의 반사를 고려해야 한다. 본 논문에서는 파수유한요소/경계요소법을 이용해 지면에 의해 발생하는 레일 소음의 변화와 그 특성을 살펴보았다. 해석은 먼저 레일이 강체 지면에 부착된 경우와 레일 패드 높이만큼 강체 지면에서 이격된 경우에 대해 방사효율을 구하고 그 결과를 비교하였다. 이를 통해 레일과 강체 지면의 이격 여부에 따라 레일 방사 소음에 크게 변화함을 확인하였다. 둘째로는 지면에 임피던스 경계조건을 부여하고 레일에서 방사되는 음향 파워 및 지향 특성의 변화를 살펴보았다.

Keywords

References

  1. D.J. Thompson (2009) Railway noise and vibration: mechanisms, modelling and means of control, Elsevier Ltd., Oxford, UK, page 291.
  2. S. Jang, J. Ryue (2013) Study on the rolling noise model using an analysis of wheel and rail vibration characteristics, Journal of the Korean Society for Railway, 16(3), pp. 175-182. https://doi.org/10.7782/JKSR.2013.16.3.175
  3. E. Salomons, D. van Maercke, J. Defrance, F. de Roo (2011) The Harmonoise sound propagation model, Acta Acustica united with Acustica, 97, pp. 62-74. https://doi.org/10.3813/AAA.918387
  4. C.M. Nilsson, D. J. Thompson, P.R. White, J. Ryue (2009) A waveguide finite element and boundary element approach to calculating the sound radiated by railway and tram rails, Journal of Sound and Vibration, 321, pp. 813-836. https://doi.org/10.1016/j.jsv.2008.10.027
  5. L. Gavric (1995) Computation of propagative waves in free rail using a finite element technique, Journal of Sound and Vibration, 183, pp. 531-543.
  6. S. Finnveden (2004) Evaluation of modal density and group velocity by a finite element method, Journal of Sound and Vibration, 273, pp.51-75. https://doi.org/10.1016/j.jsv.2003.04.004
  7. C.M . Nilsson (2004) Waveguide finite element applied on a car tyre, PhD Thesis, MWL, KTH, Stockholm.
  8. J. Ryue, D.J. Thompson, P.R. White, D.R. Thompson (2009) Decay rates of propagating waves in railway tracks at high frequencies, Journal of Sound and Vibration, 320, pp.955-976. https://doi.org/10.1016/j.jsv.2008.09.025
  9. J, Ryue, S. Jang (2013) Characteristics of vibration and sound radiated from rails of concrete slab tracks for domestic high speed trains, Transactions of the Korean Society for Noise and Vibration Engineering, 23(7), pp. 605-616. https://doi.org/10.5050/KSNVE.2013.23.7.605
  10. J. Ryue, S. Jang (2012) Comparison of track vibration characteristics for domestic railway tracks in the aspect of rolling noise, Journal of the Korean Society for Railway, 16(2), pp. 85-92. https://doi.org/10.7782/JKSR.2013.16.2.085
  11. M.E. Delany and E.N. Bazley (1970) Acoustical properties of fibrous absorbent materials, Applied Acoustics, 3, pp.105-116. https://doi.org/10.1016/0003-682X(70)90031-9
  12. X. Zhang, D.J. Thompson, S. Giacomo (2014) Influence of ground impedance on the sound radiation of a railway track, Proceedings of the 21st International Congress on Sound and Vibration, Beijing, China, paper no. 162.