INTRODUCTION

Since the introduction of endoscopy for transsphenoidal pituitary surgery in 1992, endoscopic endonasal transsphenoidal approach (EETSA) for sellar and parasellar regions has been considerably advanced. EETSA is a minimally invasive technique that is considered to be safe and effective for treatment of pituitary adenoma and other parasellar lesions. However, EETSA allows only for a very limited space for instrument manipulation and results in difficulties in dura repair for cerebrospinal fluid (CSF) leak after tumor removal. If not completely controlled during surgery, postoperative CSF leaks may be troublesome. Long-term bed rest, CSF diversion techniques, and revision surgery for sellar floor reconstruction may be needed for the management of CSF leaks and prevention of related complications, such as meningitis and tension pneumocephalus. Thus, in order to avoid postoperative CSF leaks, it is essential to achieve the complete sellar floor reconstruction. Many different reconstruction materials and methods using autologous and synthetic materials have been introduced. Recently, the pedicled nasoseptal flap has undergone many modifications and eventually proved to be valuable and efficient. However, using these nasoseptal flaps in all patients who undergo transsphenoidal surgery, including those who had none or only minor CSF leakage, appears to be overly invasive and time-consuming.

Objective : Complete sellar floor reconstruction is critical to avoid postoperative cerebrospinal fluid (CSF) leakage during transsphenoidal surgery. Recently, the pedicled nasoseptal flap has undergone many modifications and eventually proved to be valuable and efficient. However, using these nasoseptal flaps in all patients who undergo transsphenoidal surgery, including those who had none or only minor CSF leakage, appears to be overly invasive and time-consuming.

Methods : Patients undergoing endoscopic endonasal transsphenoidal tumor surgery within a 5 year-period were reviewed. Since 2009, we classified the intraoperative CSF leakage into grades from 0 to 3. Sellar floor reconstruction was tailored to each leak grade. We did not use any tissue grafts such as abdominal fat and did not include any procedures of CSF diversions such as lumbar drainage.

Results : Among 200 cases in 188 patients (147 pituitary adenoma and 41 other pathologies), intraoperative CSF leakage was observed in 27.4% of 197 cases : 14.7% Grade 1, 4.6% Grade 2a, 3.0% Grade 2b, and 5.1% Grade 3. Postoperative CSF leakage was observed in none of the cases. Septal bone buttress was used for Grade 1 to 3 leakages instead of any other foreign materials. Pedicled nasoseptal flap was used for Grades 2b and 3 leakages. Unused septal bones and nasoseptal flaps were repositioned.

Conclusion : Modified classification of intraoperative CSF leaks and tailored repair technique in a multilayered fashion using an en-bloc harvested septal bone and vascularized nasoseptal flaps is an effective and reliable method for the prevention of postoperative CSF leaks.

Key Words : Cerebrospinal fluid leak · Endoscopy · Skull base · Pituitary adenoma · Complications · Outcome.

Modified Graded Repair of Cerebrospinal Fluid Leaks in Endoscopic Endonasal Transsphenoidal Surgery

Jae-Hyun Park, M.D., 1 Jai Ho Choi, M.D., 2 Young-II Kim, M.D., 3 Sung Won Kim, M.D., Ph.D., 4 Yong-Kil Hong, M.D., Ph.D. 5

Departments of Neurosurgery, 1 Otolaryngology-Head and Neck Surgery, 4 Seoul St. Mary’s Hospital, The Catholic University of Korea, Seoul, Korea
Department of Neurosurgery, 2 Bundang Jesaeng Hospital, Seongnam, Korea
Department of Neurosurgery, 3 St. Vincent’s Hospital, The Catholic University of Korea, Suwon, Korea

Objective : Complete sellar floor reconstruction is critical to avoid postoperative cerebrospinal fluid (CSF) leakage during transsphenoidal surgery. Recently, the pedicled nasoseptal flap has undergone many modifications and eventually proved to be valuable and efficient. However, using these nasoseptal flaps in all patients who undergo transsphenoidal surgery, including those who had none or only minor CSF leakage, appears to be overly invasive and time-consuming.

Methods : Patients undergoing endoscopic endonasal transsphenoidal tumor surgery within a 5 year-period were reviewed. Since 2009, we classified the intraoperative CSF leakage into grades from 0 to 3. Sellar floor reconstruction was tailored to each leak grade. We did not use any tissue grafts such as abdominal fat and did not include any procedures of CSF diversions such as lumbar drainage.

Results : Among 200 cases in 188 patients (147 pituitary adenoma and 41 other pathologies), intraoperative CSF leakage was observed in 27.4% of 197 cases : 14.7% Grade 1, 4.6% Grade 2a, 3.0% Grade 2b, and 5.1% Grade 3. Postoperative CSF leakage was observed in none of the cases. Septal bone buttress was used for Grade 1 to 3 leakages instead of any other foreign materials. Pedicled nasoseptal flap was used for Grades 2b and 3 leakages. Unused septal bones and nasoseptal flaps were repositioned.

Conclusion : Modified classification of intraoperative CSF leaks and tailored repair technique in a multilayered fashion using an en-bloc harvested septal bone and vascularized nasoseptal flaps is an effective and reliable method for the prevention of postoperative CSF leaks.

Key Words : Cerebrospinal fluid leak · Endoscopy · Skull base · Pituitary adenoma · Complications · Outcome.

INTRODUCTION

Since the introduction of endoscopy for transsphenoidal pituitary surgery in 1992, endoscopic endonasal transsphenoidal approach (EETSA) for sellar and parasellar regions has been considerably advanced. EETSA is a minimally invasive technique that is considered to be safe and effective for treatment of pituitary adenoma and other parasellar lesions. However, EETSA allows only for a very limited space for instrument manipulation and results in difficulties in dura repair for cerebrospinal fluid (CSF) leak after tumor removal. If not completely controlled during surgery, postoperative CSF leaks may be troublesome. Long-term bed rest, CSF diversion techniques, and revision surgery for sellar floor reconstruction may be needed for the management of CSF leaks and prevention of related complications, such as meningitis and tension pneumocephalus. Thus, in order to avoid postoperative CSF leaks, it is essential to achieve the complete sellar floor reconstruction. Many different reconstruction materials and methods using autologous and synthetic materials have been introduced. Moreover, a graded repair approach to CSF leaks after EETSA has been introduced; however, the outcome was insufficient, especially in large diaphragmatic defects. Recently, a novel method using a pedicled nasoseptal flap (NSF) was introduced and used for the cases in which large intraoperative CSF leaks occurred by large diaphragmatic defects. Moreover, a modification of NSF elevation method has been reported, in detail, by several surgeons.

This report provides a detailed account of our experience using a modified NSF grading and repair protocol. Since 2009, we started performing EETSAs with a modified graded repair technique to prevent CSF leaks. Patients undergoing
EETSA within a 5-year-period were reviewed. In this paper, we introduce our reliable and effective method of the modified graded repair technique.

MATERIALS AND METHODS

Approval for this study was granted by the Institutional Review Board of Seoul St. Mary’s Hospital. We retrospectively reviewed the patients who underwent EETSA in our institute from January 2009 to December 2013 (i.e., the 5-year period). The total number of patients was 188. Additionally, a total of 200 operations, including recurrent tumors, were performed. Since January of 2009, we classified the intraoperative CSF leakage into grades from 0 to 3 (Fig. 1). We modified the grading system of CSF leaks initially introduced in 2007 by Esposito et al. The medical records of 188 patients were reviewed and analyzed by the present authors. The operative records, including notes and video, as well as other medical records, were reviewed to identify procedure-related complications. All patients were followed postoperatively for at least 3 months and were monitored with endoscopic examinations and imaging.

Surgical technique

All operations were performed via two nostrils-four hands technique in which the main surgeon freely uses two surgical instruments and an assistant neurosurgeon holds the endoscope using a different instrument. The nasal and sphenoid stage was performed by a rhinology surgeon, the sellar stage was performed by a neurosurgeon, and sellar repair was performed by both surgeons. The patient’s head was positioned on a horseshoe head rest and an electromagnetic navigation system (Medtronics®, Louisville, KY, USA) was used for all patients. During the approach, the bilateral inferior turbinates were outfractured and both middle turbinates were fully lateralized. Furthermore, we lateralized the superior turbinate and confirmed the natural orifice of the sphenoid sinus. We used bilateral modified “rescue” flaps introduced by Kim et al. The flap was designed on the right side of the nasal septum. A curvilinear incision was made from the inferior border of the sphenoidal sinus ostium following the sagittal plane of the septum with a rongeur. After elevating the right modified nasoseptal rescue flap, the posterior bony septum that included a portion of the perpendicular plate of the ethmoid bone, the vomer, and the anterior wall of the sphenoidal sinus was removed in en-bloc fashion. We attempted to harvest the posterior septal bone in an en-bloc fashion for use in sellar floor reconstruction. The sellar floor was exposed after the procedure and a left-side modified “rescue” flap was made along the border of the removed septal bone. To avoid any injuries affecting the potential use of those flaps, both NSFs were displaced into the nasopharynx. Then, we removed the sphenoid septum and reflected the sphenoid mucosa laterally to cover the sphenoid sinus again during the sellar repair. The sellar floor was drilled out, the dura was opened, and the tumor was removed under the two nostrils-four hands technique by two neurosurgeons (the main surgeon and the assistant).

Intraoperative CSF leaks were graded according to the modified CSF leak grading system (Fig. 2). The repair protocol for each grade is summarized in Fig. 3. In cases of no intraoperative CSF leaks, sellar reconstruction was not performed. In cases of small “weeping” leaks (Grade 1), sellar reconstruction was not performed postoperatively for at least 3 months and were monitored with endoscopic examinations and imaging.

Intraoperative CSF leaks were graded according to the modified CSF leak grading system (Fig. 2). The repair protocol for each grade is summarized in Fig. 3. In cases of no intraoperative CSF leaks, sellar reconstruction was not performed. In cases of small “weeping” leaks (Grade 1), sellar reconstruction was not performed postoperatively for at least 3 months and were monitored with endoscopic examinations and imaging.

Fig. 1. A : The first incision was made anteriorly toward the level of one-half to one-third the height of the middle turbinate over the vomer to preserve the nasoseptal pedicle. Then, a curvilinear incision (along the white arrows) was made from the inferior border of the sphenoidal sinus ostium following the sagittal plane of the septum slightly downward. B : By using Cottle and hockey stick elevators, a mucoperiosteal flap was made from the right side of the bony nasal septum and displaced downward into the nasopharynx.

Fig. 2. Modified grading system for cerebrospinal fluid (CSF) leak after endoscopic transsphenoidal surgery.
Table 1. Repair protocol for cerebrospinal fluid leak after endoscopic transsphenoidal surgery

Grade 0	Oxidative cellulose (Surgicel)	None (Reposition of septal bone & mucosal flap)
Grade 1	+ Dural substitute (Duraform)	Sphenoid mucosa
Grade 2a	+ Collagen hemostatic agent (TachoComb)	Epidural septal bone
Grade 2b	+ Inlay dural substitute	Tissue sealant (DuraSeal)
Grade 3		Pedicled nasoseptal flap

Sellar reconstruction was performed in a multilayered fashion. First layer consisted of oxidative cellulose packing (Surgicel®, Ethicon; Johnson & Johnson, Somerville, NJ, USA), outlay dural substitutes (Duraform®, Codman; Johnson & Johnson, Raynham, MA, USA) as the first layer and the placement of prepared septal bone into the bony defect of the sellar floor as the second layer. Furthermore, the reflected sphenoid mucosa was repositioned for coverage of the operation site as the third layer and a tissue sealant (DuraSeal®, Covidien, Dublin, Ireland) was applied as the fourth layer. When too much of the sphenoid mucosa had been removed, the left modified “rescue” flap was used instead of the sphenoid mucosa as the third layer. If there was a moderate CSF leak with an obvious diaphragmatic defect (grade 2a), the diaphragmatic defect site was sealed with a collagen hemostatic agent (TachoComb®, CSL Behring, Tokyo, Japan) and a multilayered technique as, for grade 1 repair, was used. When a CSF leak was observed after septal bone insertion with the Valsalva maneuver (grade 2b), the right conventional flap was applied to the denuded sphenoid sinus as the third layer and tissue sealant was spread over the NSF as the fourth layer. In cases of large CSF leaks (grade 3), sellar repair with an inlay and outlay dural substitutes, septal bone, and a pedicled NSF was performed (Fig. 3, 4). Pedicled NSFs (conventional NSFs) were made by extending the incision of initial approach, which is described previously in term of modified “rescue” flap, only in the cases of grade 2b and grade 3 CSF leaks.

The unused NSFs were repositioned to the origin site of the flap and unused posterior septal bone was inserted between the bilateral nasoseptal flaps. Nasal packing was performed with biodegradable fragmentable foam (Nasopore®, Polyganics, Groningen, The Netherlands) and polyvinyl alcohol sponge (Merocel®, Medtronic Xomed Surgical Products, Jacksonville, FL, USA) which was removed on day 3 postoperatively. For patients with grade 1 to 3 CSF leaks, one day of bed rest was sufficient.

RESULTS

Among 200 cases in 188 patients (147 pituitary adenoma and 41 other pathologies), 3 cases (1.5%) were excluded due to preoperative infection. The mean age of the patients was 46.6 years, and there were more female patients (54.4%). Visual disturbance was the most frequent symptom, followed by hormonal symptom. Table 2 outlines the pathologic entities of all patients. The most common pathology was pituitary adenoma. The mean size of tumors was 2.54 cm (range from 0.6 to 9.8 cm).

Intraoperative CSF leakage was observed in 27.4% of the 197 cases (Table 3), specifically: 14.7% grade 1, 4.6% grade 2a, 3.0% grade 2b, and 5.1% grade 3. The sellar floor was reconstructed according to the CSF leak grading system (Table 1, 4). There were no cases of postoperative CSF leakage. Septal bone buttress was used for Grades 1 to 3 leakages instead of any other foreign materials. Pedicled nasoseptal flap was used for grades 2b and 3 leakages. Especially in grade 3 CSF leaks, in which the outcome of CSF leak repair was not sufficient in other reports, all cases with applied pedicled NSF had no postoperative CSF leaks and the flaps became mucosalized 6 to 12 weeks after surgery. grade 2b CSF leaks occurred in chordomas (2 cases), craniopharyngiomas (2 cases) and tuberculum sellae meningiomas (2 cases). Moreover, grade 3 CSF leaks occurred in chordomas (5 cases), craniopharyngiomas (4 cases) and pituitary adenoma.

1. Unused septal bones and nasoseptal flaps were repositioned. Abdominal fat graft or lumbar CSF diversion was completely unnecessary.

2. The common complications after surgery were panhypopituitarism (5.6%) and diabetes insipidus (3.6%) (Table 5). There were two meningitis cases without postoperative CSF leaks (1.0%) and all patients recovered with an antibiotics therapy.

3. To assess several nasal symptoms, all patients underwent preoperative nasal evaluation using Nasal Obstruction Symptom Evaluation (NOSE), Sino-Nasal Outcome Test (SNOT-20), and a visual analogue scale (VAS), and the repeat tests were performed 6 months postoperatively. There was no significant difference between the preoperative and postoperative NOSE scores and SNOT-20 scores. However, according to a VAS score, nasal symptoms of subjectively decreased olfactory function were observed in the patients with elevated NSFs (p<0.05).

DISCUSSION

Postoperative CSF leak is a serious potential problem following EETSA. While the rate of postoperative CSF leaks after pituitary surgery is lower than 5%, the incidence after extended endoscopic TSA is higher than in the traditional sellar approach. The reliable reconstruction of the sellar floor against intraoperative CSF leaks during EETSA is essential in order to avoid unfavorable postoperative outcomes. To this end,
many surgeons have introduced a variety of sellar reconstruction materials and methods. Autologous materials, such as fat, fascia, and muscle graft, and synthetic materials, including alumina ceramic, stainless steel, silicon, titanium, vycril patches, and collagen fleece, have been recommended and used \(^{1,7,8,11,14,16,18,22,24,34,35,37}\). While all of the above can be effective for prevention of postoperative CSF leaks, some of these materials have disadvantages. A secondary incision in the abdomen, thigh, or nasal mucosa was needed for harvesting autologous fat, muscle, fascia, septal cartilage, and bone. Similarly, several synthetic materials provoked host-tissue reactions and the distortion of magnetic resonance images \(^{25,34}\).

In this report, we provide a detailed account of our experience using a modified CSF leak grading and repair protocol. Since 2009, we started using the two nostrils-four hands technique to perform EETSA more comfortably. To facilitate this technique, a larger posterior septectomy was needed, because it provided a wider working space and surgical view for the neurosurgeon. However, massive destruction of the bilateral posterior septal mucosa and bone induced nasal morbidity, such as nasal crusting, rhinolalia, and olfactory disturbance \(^{35}\). Thus, we elevated bilateral NSFs and removed posterior septal bone as en-bloc in all EETSA cases and were able to perform two nostrils-four hands technique without massive destruction of posterior septum. In addition, potential sellar floor reconstruction materials including septal bone and pedicled NSF could be obtained in the process of bilateral NSFs elevation. As these materials were used in a multilayered fashion according to the CSF leak grading system, complete sellar floor reconstruction could be achieved without additional incisions in the abdomen, thigh, or nasal mucosa, as well as without postoperative CSF diversion. Esposito et al. \(^{7}\) introduced multilayered sellar repair methods without nasoseptal flaps according to the CSF leak grading system. Postoperative CSF leak rate was low in grades 0, 1, and 2 CSF leaks (0.7%, 3%, and 1%, respectively), but high (12%) in grade 3 in spite of intrasellar and sphenoid sinus fat packing, onlay titanium mesh, and the insertion of lumbar drainage postoperatively. We used no abdominal fat, fascia lata, or CSF diversion techniques and achieved a good surgical outcome with septal bone buttress and NSFs in grades 2 and 3 CSF leaks. There are several reports where multilayered sellar floor reconstruction was performed with NSFs and where the reported postoperative CSF leak rate ranged from 3.1% to 5.4% in high-flow CSF leaks \(^{17,26}\). While in these studies a unilateral NSF was elevated in cases of anticipated high-flow CSF leaks, we routinely make bilateral NSFs in EETSA because the flaps are not only for sellar floor reconstruction, but also for two nostrils-four hands technique. We achieved the complete sellar floor reconstruction with bilateral NSFs and septal bone and simultaneously obtained a wide operation field and working space preventing the conflicting interaction of endoscopic instruments.

The bilateral NSFs elevation has the advantage of reposition-

Table 4. Modified grading system and repair protocol for cerebrospinal fluid leak during endoscopic transsphenoidal surgery

<table>
<thead>
<tr>
<th>CSF leak grade</th>
<th>Sellar reconstruction method</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grade 0</td>
<td>No sellar reconstruction, oxidative cellulose packing and repositioning of sphenoid mucosa</td>
</tr>
<tr>
<td>Grade 1</td>
<td>First layer: oxidative cellulose packing, outlay dural substitute</td>
</tr>
<tr>
<td></td>
<td>Second layer: epidural septal bone</td>
</tr>
<tr>
<td></td>
<td>Third layer: sphenoid mucosa</td>
</tr>
<tr>
<td></td>
<td>Fourth layer: tissue sealant</td>
</tr>
<tr>
<td>Grade 2a: No CSF leak after septal bone insertion with Valsalva maneuver</td>
<td>First layer: collagen hemo-</td>
</tr>
<tr>
<td></td>
<td>lastic agent on diaphragmatic defect, oxidative cellulose packing, outlay dural</td>
</tr>
<tr>
<td></td>
<td>substitutes</td>
</tr>
<tr>
<td></td>
<td>Second layer: epidural septal bone</td>
</tr>
<tr>
<td></td>
<td>Third layer: sphenoid mucosa</td>
</tr>
<tr>
<td></td>
<td>Fourth layer: tissue sealant</td>
</tr>
<tr>
<td>Grade 2b: CSF leak after septal bone insertion with Valsalva maneuver</td>
<td>First layer: collagen hemo-</td>
</tr>
<tr>
<td></td>
<td>lastic agent on diaphragmatic defect, oxidative cellulose packing, outlay dural</td>
</tr>
<tr>
<td></td>
<td>substitutes</td>
</tr>
<tr>
<td></td>
<td>Second layer: epidural septal bone</td>
</tr>
<tr>
<td></td>
<td>Third layer: pedicled nasoseptal mucosal flap</td>
</tr>
<tr>
<td></td>
<td>Fourth layer: tissue sealant</td>
</tr>
<tr>
<td>Grade 3</td>
<td>First layer: collagen hemo-</td>
</tr>
<tr>
<td></td>
<td>lastic agent on diaphragmatic defect, oxidative cellulose packing, inlay and</td>
</tr>
<tr>
<td></td>
<td>outlay dural substitute</td>
</tr>
<tr>
<td></td>
<td>Second layer: epidural septal bone</td>
</tr>
<tr>
<td></td>
<td>Third layer: pedicled nasoseptal mucosal flap</td>
</tr>
<tr>
<td></td>
<td>Fourth layer: tissue sealant</td>
</tr>
</tbody>
</table>

Table 5. Other common complications

<table>
<thead>
<tr>
<th>Complications</th>
<th>n (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diabetes insipidus</td>
<td>7 (3.6)</td>
</tr>
<tr>
<td>Panhypopituitarism</td>
<td>11 (5.6)</td>
</tr>
<tr>
<td>Intrasellar hemorrhage</td>
<td>3 (1.5)</td>
</tr>
<tr>
<td>Carotid artery injury</td>
<td>0 (0)</td>
</tr>
<tr>
<td>Flap necrosis</td>
<td>2 (1.0)</td>
</tr>
<tr>
<td>Meningitis without postoperative CSF leak</td>
<td>2 (1.0)</td>
</tr>
</tbody>
</table>
ing the unused bone and flaps and allows for dealing with un-
expected intraoperative CSF leaks. Repositioning of unused
bone and flaps makes it possible to restore the patients’ nasal
septum postoperatively and minimize the septal defect and na-
sal morbidity. Moreover, during the revision surgery, we
were able to elevate the NSFs again and use the repositioned septal
bone and NSFs for sellar floor reconstruction. Preparing NSFs
can be essential in the reconstruction of sellar floor with an
unexpected intraoperative CSF leak during EETSA. All NSFs were
well mucosalized on the sellar floor and there was no postoperative
CSF leak.

The nasoseptal flap-related complications were postopera-
tively decreased olfactory function. NAS scores for olfactory
functional disturbance worsened significantly; however, other
parameters, including VAS for nasal stuffiness, rhinorrhea,
sneezing, and obstruction, showed no significant differences af-
ter the surgery. Careful attention and meticulous manipulation
of nasal structures is necessary for surgeons not to injure the ol-
factory neuroepithelium. Further investigations to reduce olfac-
tory dysfunction after EETSA are necessary. Minimizing the inci-
sion and surgical approach during the nasal stage could be an
alternative option to preserve olfactory function.

CONCLUSION

Patients undergoing EETSA within a 5 year-period were re-
viewed and the overall postoperative CSF leak rate for those 5
years was 0.0% (0 of 197 cases). To our knowledge, this modi-
gified grade repair technique shows the most successful out-
come compared to other reports.14,45,66,77

Modified classification of intraoperative CSF leaks and tai-
lored repair technique in a multilayered fashion using an en-
bloc harvested septal bone and vascularized nasoseptal flaps is
an effective and reliable method for the prevention of postopera-
tive CSF leak. Without using any artificial grafts, abdominal fat
graft, and lumbar CSF diversion, this method is considerably
more convenient and successful for intraoperative CSF leaks.

References

justable titanium plate for reconstruction of the sella turcica. Technical
lications of endoscopic surgery of the pituitary adenomas: analysis of
570 patients and review of the literature. Pituitary 15: 288-300, 2012
3. Cappabianca P, Cavallo LM, Colao A, de Divitiis E: Surgical complica-
tions associated with the endoscopic endonasal transsphenoidal ap-
repair in endoscopic endonasal transsphenoidal surgery: results of 170
cases. Neurosurgery 51: 1365-1371; discussion 1371-1372, 2002
rhinorrhea after transsphenoidal surgery by collagen fleece coated with
fibrin sealant without autologous tissue graft or postoperative lumbar
drainage. Neurosurgery 68 (1 Suppl Operative): 130-136; discussion
136-137, 2011
T: Variations on the standard transsphenoidal approach to the sellar re-
gion, with emphasis on the extended approaches and parasellar ap-
proaches: surgical experience in 105 cases. Neurosurgery 55: 539-547;
discussion 547-550, 2004
7. Esposito E, Dusick JR, Paterni N, Kelly DF: Graded repair of cranial
base defects and cerebrospinal fluid leaks in transsphenoidal surgery.
Neurosurgery 60 (4 Suppl 2): 295-303; discussion 303-304, 2007
8. Freiberg MR, Hybels RL, Bohigian RK: Closure of cerebrospinal fluid
leakage after transsphenoidal surgery: technical note. Neurosurgery 35:
159-160, 1994
9. Goel A, Muzumdar DP: Reconstruction of the sella floor using vascular-
10. Hadad G, Bassagasteguy L, Carrau RL, Mataza JC, Kassam A, Snyder-
man CH, et al.: A novel reconstructive technique after endoscopic ex-
panded endonasal approaches: vascular pedicle nasoseptal flap. Laryn-
goscope 116: 1882-1886, 2006
12. Horridge M, Jesurasa A, Olubajo E, Mizra S, Sinha S: The use of the na-
soseptal flap to reduce the rate of post-operative cerebrospinal fluid
leaks following endoscopic trans-sphenoidal surgery for pituitary dis-
al.: Long-term evaluation of reconstruction of the sellar floor with a sili-
15. Kaptain GJ, Kanter AS, Hamilton DK, Laws ER: Management and im-
plications of intraoperative cerebrospinal fluid leak in transnasoseptal
transsphenoidal microsurgery. Neurosurgery 68 (1 Suppl Operative): 144-
150; discussion 150-151, 2011
transsphenoidal surgery with bioabsorbable implants. Neurosurgery 48:
232-233; discussion 233-234, 2001
17. Kassam AB, Thomas A, Carrau RL, Snyderman CH, Vescan A, Preve-
dello D, et al.: Endoscopic reconstruction of the cranial base using a pedi-
ced nasoseptal flap. Neurosurgery 63 (1 Suppl 1): ONS44-ONS52; dis-
cussion ONS52-ONS53, 2008
18. Kelly DF, Oskouian RJ, Fineman I: Collagen sponge repair of small ce-
rebrospinal fluid leaks obviates tissue grafts and cerebrospinal fluid di-
version after pitutary surgery. Neurosurgery 49: 885-889; discussion
889-890, 2001
modified nasoseptal “rescue” flaps in the endoscopic endonasal trans-
sphenoidal approach. Laryngoscope 123: 2605-2609, 2013
20. Kim BY, Son HL, Kang SG, Kim SW, Hong YK, Jeun SS, et al.: Postopera-
tive nasal symptoms associated with an endoscopic endonasal trans-
21. Kitano M, Taneda M: Extended transsphenoidal approach with sub-
mucosal posterior ethmoidectomy for parasellar tumors. Technical
22. Kobayashi S, Hara H, Okudera H, Takekuma T, Sugita K: Usefulness of
23. Kumar A, Maertens NF, Kaye AH: Reconstruction of the sellar floor
using Bioglue following transsphenoidal procedures. J Clin Neurosci 10:
92-95, 2003
24. Liu JK, Schmidt RF, Choudhry OJ, Shalda PA, Eloy JA: Surgical nuances
for nasoseptal flap reconstruction of cranial base defects with high-
flow cerebrospinal fluid leaks after endoscopic skull base surgery. Neu-