DOI QR코드

DOI QR Code

Differentiation of Benign from Malignant Adnexal Masses by Functional 3 Tesla MRI Techniques: Diffusion-Weighted Imaging and Time-Intensity Curves of Dynamic Contrast-Enhanced MRI

  • Malek, Mahrooz (Department of Radiology, Medical Imaging Center, Advanced Diagnostic and Interventional Radiology Research Center (ADIR), Imam Khomeini Hospital) ;
  • Pourashraf, Maryam (Department of Radiology, Medical Imaging Center, Advanced Diagnostic and Interventional Radiology Research Center (ADIR), Imam Khomeini Hospital) ;
  • Mousavi, Azam Sadat (Department of Gynecology Oncology, Vali-e-Asr Hospital, Tehran University of Medical Sciences) ;
  • Rahmani, Maryam (Department of Radiology, Medical Imaging Center, Advanced Diagnostic and Interventional Radiology Research Center (ADIR), Imam Khomeini Hospital) ;
  • Ahmadinejad, Nasrin (Department of Radiology, Medical Imaging Center, Advanced Diagnostic and Interventional Radiology Research Center (ADIR), Imam Khomeini Hospital) ;
  • Alipour, Azam (Department of Radiology, Medical Imaging Center, Advanced Diagnostic and Interventional Radiology Research Center (ADIR), Imam Khomeini Hospital) ;
  • Hashemi, Firoozeh Sadat (Department of Gynecology Oncology, Vali-e-Asr Hospital, Tehran University of Medical Sciences) ;
  • Shakiba, Madjid (Department of Radiology, Medical Imaging Center, Advanced Diagnostic and Interventional Radiology Research Center (ADIR), Imam Khomeini Hospital)
  • Published : 2015.04.29

Abstract

Background: The aim of this study was to evaluate and compare the accuracy of diffusion-weighted imaging (DWI), apparent diffusion coefficient (ADC) value, and time-intensity curve (TIC) type analysis derived from dynamic contrast-enhanced MR imaging (DCE-MRI) in differentiating benign from malignant adnexal masses. Materials and Methods: 47 patients with 56 adnexal masses (27 malignant and 29 benign) underwent DWI and DCE-MRI examinations, prior to surgery. DWI signal intensity, mean ADC value, and TIC type were determined for all the masses. Results: High signal intensity on DWI and type 3 TIC were helpful in differentiating benign from malignant adnexal masses (p<0.001). The mean ADC value was significantly lower in malignant adnexal masses (p<0.001). An ADC value< $1.20{\times}10^{-3}mm^2/s$ may be the optimal cutoff for differentiating between benign and malignant tumors. The negative predictive value for low signal intensity on DWI, and type 1 TIC were 100%. The pairwise comparison among the receiver operating characteristic (ROC) curves showed that the area under the curve (AUC) of TIC was significantly larger than the AUCs of DWI and ADC (p<0.001 for comparison of TIC and DWI, p<0.02 for comparison of TIC and ADC value). Conclusions: DWI, ADC value and TIC type derived from DCE-MRI are all sensitive and relatively specific methods for differentiating benign from malignant adnexal masses. By comparing these functional MR techniques, TIC was found to be more accurate than DWI and ADC.

Keywords

References

  1. Arikan SK, Kasap B, Yetimalar H, et al (2014). Impact of prognostic factors on survival rates in patients with ovarian carcinoma. Asian Pac J Cancer Prev, 15, 6087-94. https://doi.org/10.7314/APJCP.2014.15.15.6087
  2. Arun-Muthuvel V, Jaya V (2014). Pre-operative evaluation of ovarian tumors by risk of malignancy index, CA125 and ultrasound. Asian Pac J Cancer Prev, 15, 2929-32. https://doi.org/10.7314/APJCP.2014.15.6.2929
  3. Buckley DL, Drew PJ, Mussurakis S, et al (1997). Microvessel density of invasive breast cancer assessed by dynamic Gd-DTPA enhanced MRI. J Magn Reson Imaging, 7, 461-4. https://doi.org/10.1002/jmri.1880070302
  4. Busard MP, Mijatovic V, van Kuijk C, et al (2010). Magnetic resonance imaging in the evaluation of (deep infiltrating) endometriosis: the value of diffusion-weighted imaging. J Magn Reson Imaging, 31, 1117-23. https://doi.org/10.1002/jmri.22139
  5. Fujii S, Kakite S, Nishihara K, et al (2008). Diagnostic accuracy of diffusion-weighted imaging in differentiating benign from malignant ovarian lesions. J Magn Reson Imaging, 28, 1149-56. https://doi.org/10.1002/jmri.21575
  6. Gupta T, Gupta S, Bhatia P, Gupta N (2013). Pelvic tuberculosis mimicking ovarian malignancy: A case report. ICJP, 24, 456-8.
  7. Jacobs I, Oram D, Fairbanks J, et al (1990). A risk of malignancy index incorporating CA 125, ultrasound and menopausal status for the accurate preoperative diagnosis of ovarian cancer. Br J Obstet Gynaecol, 97, 922-9. https://doi.org/10.1111/j.1471-0528.1990.tb02448.x
  8. Karadag B, Kocak M, Kayikcioglu F, et al (2014). Risk for malignant and borderline ovarian neoplasms following basic preoperative evaluation by ultrasonography, ca125 level and age. Asian Pac J Cancer Prev, 15, 8489-93. https://doi.org/10.7314/APJCP.2014.15.19.8489
  9. Katayama M, Masui T, Kobayashi S, et al (2002). Diffusionweighted echo planar imaging of ovarian tumors: is it useful to measure apparent diffusion coefficients? J Comput Assist Tomogr, 26, 250-6. https://doi.org/10.1097/00004728-200203000-00015
  10. Kunpalin Y, Triratanachat S, Tantbirojn P (2014). Proportion of ovarian cancers in overall ovarian masses in Thailand. Asian Pac J Cancer Prev, 15, 7929-34. https://doi.org/10.7314/APJCP.2014.15.18.7929
  11. Li W, Chu C, Cui Y, et al (2012). Diffusion-weighted MRI: a useful technique to discriminate benign versus malignant ovarian surface epithelial tumors with solid and cystic components. Abdom Imaging, 37, 897-903. https://doi.org/10.1007/s00261-011-9814-x
  12. Mohaghegh P, Rockall AG (2012). Imaging strategy for early ovarian cancer: characterization of adnexal masses with conventional and advanced imaging techniques. Radiographics, 32, 1751-73. https://doi.org/10.1148/rg.326125520
  13. Outwater EK, Siegelman ES, Hunt JL (2001). Ovarian teratomas: tumor types and imaging characteristics. Radiographics, 21, 475-90. https://doi.org/10.1148/radiographics.21.2.g01mr09475
  14. Ozbay PO, Ekinci T, Caltekin MD, et al (2015). Comparative evaluation of the risk of malignancy index scoring systems (1-4) used in differential diagnosis of adnexal masses. Asian Pac J Cancer Prev, 16, 345-9. https://doi.org/10.7314/APJCP.2015.16.1.345
  15. Padhani AR, Gapinski CJ, Macvicar DA, et al (2000). Dynamic contrast enhanced MRI of prostate cancer: correlation with morphology and tumour stage, histological grade and PSA. Clin Radiol, 55, 99-109. https://doi.org/10.1053/crad.1999.0327
  16. Pagani E, Bizzi A, Di Salle F, et al (2008). Basic concepts of advanced MRI techniques. Neurol Sci, 29, 290-5. https://doi.org/10.1007/s10072-008-1001-7
  17. Poncelet E, Delpierre C, Kerdraon O, et al (2013). Value of dynamic contrast-enhanced MRI for tissue characterization of ovarian teratomas: correlation with histopathology. Clin Radiol, 68, 909-16. https://doi.org/10.1016/j.crad.2013.03.029
  18. Siegelman ES, Oliver ER (2012). MR imaging of endometriosis:ten imaging pearls. Radiographics, 32, 1675-91. https://doi.org/10.1148/rg.326125518
  19. Simsek HS, Tokmak A, Ozgu E, et al (2014). Role of a risk of malignancy index in clinical approaches to adnexal masses. Asian Pac J Cancer Prev, 15, 7793-7. https://doi.org/10.7314/APJCP.2014.15.18.7793
  20. Takeuchi M, Matsuzaki K, Nishitani H (2010). Diffusionweighted magnetic resonance imaging of ovarian tumors: differentiation of benign and malignant solid components of ovarian masses. J Comput Assist Tomogr, 34, 173-6. https://doi.org/10.1097/RCT.0b013e3181c2f0a2
  21. Tantipalakorn C, Wanapirak C, Khunamornpong S, et al (2014). IOTA simple rules in differentiating between benign and malignant ovarian tumors. Asian Pac J Cancer Prev, 15, 5123-6. https://doi.org/10.7314/APJCP.2014.15.13.5123
  22. Thomassin-Naggara I, Bazot M, Darai E, et al (2008a). Epithelial ovarian tumors: value of dynamic contrast-enhanced MR imaging and correlation with tumor angiogenesis. Radiology, 248, 148-59. https://doi.org/10.1148/radiol.2481071120
  23. Thomassin-Naggara I, Darai E, Cuenod CA, et al (2009). Contribution of diffusion-weighted MR imaging for predicting benignity of complex adnexal masses. Eur Radiol, 19, 1544-52. https://doi.org/10.1007/s00330-009-1299-4
  24. Thomassin-Naggara I, Darai E, Cuenod CA, et al (2008b). Dynamic contrast-enhanced magnetic resonance imaging:a useful tool for characterizing ovarian epithelial tumors. J Magn Reson Imaging, 28, 111-20. https://doi.org/10.1002/jmri.21377
  25. Thomassin-Naggara I, Toussaint I, Perrot N, et al (2011). Characterization of complex adnexal masses: value of adding perfusion- and diffusion-weighted MR imaging to conventional MR imaging. Radiology, 258, 793-803. https://doi.org/10.1148/radiol.10100751
  26. Timmerman D, Valentin L, Bourne TH, et al (2000). Terms, definitions and measurements to describe the sonographic features of adnexal tumors: a consensus opinion from the international ovarian tumor analysis (IOTA) group. Ultrasound Obstet Gynecol, 16, 500-5. https://doi.org/10.1046/j.1469-0705.2000.00287.x
  27. Togashi K, Nishimura K, Kimura I, et al (1991). Endometrial cysts: diagnosis with MR imaging. Radiology, 180, 73-8. https://doi.org/10.1148/radiology.180.1.2052726
  28. Wakefield JC, Downey K, Kyriazi S, et al (2013). New MR techniques in gynecologic cancer. AJR Am J Roentgenol, 200, 249-60. https://doi.org/10.2214/AJR.12.8932
  29. Weinstein S, Rosen M (2010). Breast MR imaging: current indications and advanced imaging techniques. Radiol Clin North Am, 48, 1013-42. https://doi.org/10.1016/j.rcl.2010.06.011
  30. Winarto H, Laihad BJ, Nuranna L (2014). Modification of cutoff values for HE4, CA125, the risk of malignancy index, and the risk of malignancy algorithm for ovarian cancer detection in Jakarta, Indonesia. Asian Pac J Cancer Prev, 15, 1949-53. https://doi.org/10.7314/APJCP.2014.15.5.1949
  31. Yavuzcan A, Caglar M, Ozgu E, et al (2013). Should cutoff values of the risk of malignancy index be changed for evaluation of adnexal masses in Asian and pacific populations? Asian Pac J Cancer Prev, 14, 5455-9. https://doi.org/10.7314/APJCP.2013.14.9.5455
  32. Zhang P, Cui Y, Li W, et al (2012). Diagnostic accuracy of diffusion-weighted imaging with conventional MR imaging for differentiating complex solid and cystic ovarian tumors at 1.5T. World J Surg Oncol, 10, 237. https://doi.org/10.1186/1477-7819-10-237

Cited by

  1. Susceptibility Weighted With Quantitative Phase Magnetic Resonance Imaging in Differentiation of Various Stages of Hemorrhage and Calcification in Female Pelvic Pathologies vol.41, pp.4, 2017, https://doi.org/10.1097/RCT.0000000000000551
  2. Diagnostic accuracy of DWI in patients with ovarian cancer vol.96, pp.19, 2017, https://doi.org/10.1097/MD.0000000000006659
  3. Diffusion-Weighted Imaging and Proton Magnetic Resonance Spectroscopy Findings in Osteosarcoma Versus Normal Muscle vol.In Press, pp.In Press, 2017, https://doi.org/10.5812/iranjradiol.13937
  4. Computed tomography and magnetic resonance imaging features of ovarian fibrothecoma vol.14, pp.1, 2017, https://doi.org/10.3892/ol.2017.6228
  5. Surgical challenges in the treatment of perimenopausal and postmenopausal endometriosis vol.21, pp.4, 2018, https://doi.org/10.1080/13697137.2018.1439913