DOI QR코드

DOI QR Code

Evaluation of Impedance on Biological Tissues Using Automatic Control Measurement System

자동제어 측정 시스템을 이용한 생체 조직의 임피던스 평가

  • 길상형 (양산부산대학교 병원 핵의학과) ;
  • 이무석 (부산대학교병원 핵의학과) ;
  • 김상식 (부산대학교병원 의생명연구원) ;
  • 신동훈 (양산부산대학교병원 병리과) ;
  • 이성모 (양산부산대학교병원 병리과) ;
  • 김군도 (부경대학교 미생물학과) ;
  • 이종규 (부경대학교 물리학과)
  • Received : 2014.11.26
  • Accepted : 2015.08.10
  • Published : 2015.08.30

Abstract

Each biological tissue has endemic electrical characteristics owing to various differences such as those in cellular arrangement or organization form. The endemic electrical characteristics change when any biological change occurs. This work is a preliminary study surveying the changes in the electrical characteristics of biological tissue caused by radiation exposure. For protection aganinst radiation hazards, therefore the electrical characteristics of living tissue were evaluated after development of the automatic control measurement system using LabVIEW. No alteration of biological tissues was observed before and after measurement of the electrical characteristics, and the biblogical tissues exhibited similar patterns. Through repeated measurements using the impedance/gain-phase analyzer, the coefficient of variation was determined as within 10%. The reproducibility impedance phase difference in electrical characteristics of the biological tissue did not change, and the tissue had resistance. The absolute value of impedance decreased constantly in proportion to the frequency. It has become possible to understand the electrical characteristics of biological tissues through the measurements made possible by the use of the developed. automatic control system.

생체 조직은 세포 배열이나 조직 형태 등 다양한 차이에 의해 각각 고유의 전기적 특성을 가지며, 생물학적 변화가 일어나면 고유의 전기적 특성이 변한다. 본 연구는 방사선 피폭에 따른 생체 조직의 전기적 특성 변화를 측정하기 위한 선행연구로 측정 과정에서 방사선 피폭 우려가 있으므로, 실험자의 방사선 장애를 방지하기 위해 LabVIEW를 이용하여 자동제어 측정 시스템을 개발한 후 생체 조직의 특성을 평가하고자 하였다. 생체 조직의 전기적 특성 측정전 후 형태학적 변화를 관찰한 결과 조직 변화는 관찰되지 않았으며, 유사한 양상이었다. Impedance/Gain-phase analyzer로 생체 조직의 임피던스를 반복 측정한 결과 변동계수가 10% 미만으로 측정값은 재현성이 있었다. 주파수 변화에 따른 생체 조직의 전기적 특성 중에서 위상차 변화는 거의 없었으며, 조직은 저항성을 나타내었고, 임피던스 크기는 주파수에 비례하여 일정하게 감소하였다. 본 연구를 통해 생체 조직의 전기적 특성 변화를 측정할 수 있는 자동제어 시스템을 개발하였으며, 생체 조직의 전기적 특성을 이해할 수 있었다.

Keywords

References

  1. D. R. Kirks and N. T. Griscom, "Practical pediatric imaging," Diagnostic Radiology of Infants and Children, pp. 198-201 (1998)
  2. H. Yamaguchi, A. Shimizu, K. Degi and T. Morishita, "Effects of dose and dose rate of gamma ray irradiation on mutation induction and nuclear DNA content in chrysanthemum," Breeding Science, Vol. 58, No. 3, pp. 331-335 (2008) https://doi.org/10.1270/jsbbs.58.331
  3. D. W. Thayer, "Food irradiation: benefits and concerns," Journal of Food Quality, Vol. 13, No. 3, pp. 147-169 (1990) https://doi.org/10.1111/j.1745-4557.1990.tb00014.x
  4. E. S. Josephson, A. Brynjolfsson and G. G. Giddings, "Radiation pasteurization of food," Vol. 7. Ames, IA: Council for Agricultural Science and Technology, (1996)
  5. D. M. McCann and M. C. Forde, "Review of NDT methods in the assessment of concrete and masonry structures," NDT & E International, Vol. 34, No. 2, pp. 71-84 (2001) https://doi.org/10.1016/S0963-8695(00)00032-3
  6. M. Dizdaroglu, P. Jaruga, M. Birincioglu and H. Rodriguez, "Free radical-induced damage to DNA: mechanisms and measurement 1, 2," Free Radical Biology and Medicine, Vol. 32, No. 11, pp. 1102-1115 (2002) https://doi.org/10.1016/S0891-5849(02)00826-2
  7. G. E. Adams and D. G. Jameson, "Time effects in molecular radiation biology," Radiation and Environmental Biophysics, Vol. 17, No. 2, pp. 95-113 (1980) https://doi.org/10.1007/BF02027847
  8. G. F. Knoll, "Radiation Detection and Measurement," John Wiley & Sons, pp. 105-131 (2010)
  9. M. S. Kovacs, J. W. Evans, I. M. Johnstone and J. M. Brown, "Radiation-induced damage, repair and exchange formation in different chromosomes of human fibroblasts determined by fluorescence in situ hybridization," Radiation Research, Vol. 137, No. 1, pp. 34-43 (1994) https://doi.org/10.2307/3578788
  10. J. A. Martin Jr, "Calculations of environmental radiation exposures and population doses due to effluents from a nuclear fuel reprocessing plant," Radiation Data and Reports, Vol. 14, No. 2, pp. 59-76 (1973)
  11. S. H. Kil, M. S. Lee, J. H. Nam, Y. H. Lee, G. D. Kim and J. K. Lee, "Impedance changes of living tissue during radiation exposure dose," Journal of Radiation Protection, Vol. 38, No. 4, pp. 202-207 (2013) https://doi.org/10.14407/jrp.2013.38.4.202
  12. M. Miyatani, H. Kanehisa, Y. Masuo, M. Ito and T. Fukunaga, "Validity of estimating limb muscle volume by bioelectrical impedance," Journal of Applied Physiology, Vol. 91, No. 1, pp. 386-394 (2001) https://doi.org/10.1152/jappl.2001.91.1.386
  13. O. G. Martinsen and S. Grimnes, "Bioimpedance and Bioelectricity Basics," Academic Press, pp. 85-92 (2011)
  14. E. N. Marieb and K. Hoehn, "Human Anatomy & Physiology," Pearson Education, pp. 46-53 (2007)
  15. K. R. Foster and H. C. Lukaski, "Whole-body impedance--what does it measure?," The American Journal of Clinical Nutrition, Vol. 64, No. 3, pp. 388S-396S (1996)
  16. K. J. Ellis, "Human body composition: in vivo methods," Physiological Reviews, Vol. 80, No. 2, pp. 649-680 (2000)
  17. D. Miklavcic, N. Pavselj and F. X. Hart, "Electric properties of tissues," Wiley Encyclopedia of Biomedical Engineering, (2006)
  18. A. Jukka, "Body composition assessment with segmental multifrequency bioimpedance method," Journal of Sports Science and Medicine, Vol. 2, No. 3, pp. 1-29 (2003)
  19. C. H. Ling, A. J. de Craen, P. E. Slagboom, D. A. Gunn, M. P. Stokkel, R. G. Westendorp and A. B. Maier, "Accuracy of direct segmental multi-frequency bioimpedance analysis in the assessment of total body and segmental body composition in middle-aged adult population," Clinical Nutrition, Vol. 30, No. 5, pp. 610-615 (2011) https://doi.org/10.1016/j.clnu.2011.04.001
  20. S. Matzen, G. Perko, S. Groth, D. B. Friedman, & N. H. Secher, "Blood volume distribution during head-up tilt induced central hypovolaemia in man," Clinical Physiology, Vol. 11, No. 5, pp. 411-422 (1991) https://doi.org/10.1111/j.1475-097X.1991.tb00813.x
  21. R. Plutchik and H. R. Hirsch, "Skin impedance and phase angle as a function of frequency and current," Science, Vol. 141, No. 3584, pp. 927-928 (1963) https://doi.org/10.1126/science.141.3584.927