DOI QR코드

DOI QR Code

Chemical Composition, Functional Constituents, and Antioxidant Activities of Berry Fruits Produced in Korea

국내 재배 베리류의 화학 조성 및 기능성 성분과 항산화 활성

  • Lee, Yongcheol (Department of Food and Nutrition, and Research Institute of Human Ecology, Seoul National University) ;
  • Lee, Jib-Ho (Seoul Metropolitan Government Research Institute of Public Health and Environment) ;
  • Kim, Sung-Dan (Seoul Metropolitan Government Research Institute of Public Health and Environment) ;
  • Chang, Min-Su (Seoul Metropolitan Government Research Institute of Public Health and Environment) ;
  • Jo, In-Soon (Seoul Metropolitan Government Research Institute of Public Health and Environment) ;
  • Kim, Si-Jeong (Seoul Metropolitan Government Research Institute of Public Health and Environment) ;
  • Hwang, Keum Taek (Department of Food and Nutrition, and Research Institute of Human Ecology, Seoul National University) ;
  • Jo, Han-Bin (Seoul Metropolitan Government Research Institute of Public Health and Environment) ;
  • Kim, Jung-Hun (Seoul Metropolitan Government Research Institute of Public Health and Environment)
  • 이용철 (서울대학교 식품영양학과.생활과학연구소) ;
  • 이집호 (서울특별시 보건환경연구원) ;
  • 김성단 (서울특별시 보건환경연구원) ;
  • 장민수 (서울특별시 보건환경연구원) ;
  • 조인순 (서울특별시 보건환경연구원) ;
  • 김시정 (서울특별시 보건환경연구원) ;
  • 황금택 (서울대학교 식품영양학과.생활과학연구소) ;
  • 조한빈 (서울특별시 보건환경연구원) ;
  • 김정헌 (서울특별시 보건환경연구원)
  • Received : 2015.05.27
  • Accepted : 2015.07.26
  • Published : 2015.09.30

Abstract

Berry fruits are rich in phytochemicals, including polyphenols, anthocyanins, phenolic acids, and organic acids, which are known to have beneficial effects on health. The aim of this study was to investigate chemical composition, functional constituents, and antioxidant activities of mulberry, black raspberry, raspberry, and blueberry cultivated in Korea. Acidity of the four berries ranged from 0.26% to 1.10%, and pH ranged from 3.3 to 5.2. Total mineral contents of the four berries ranged from 92.9 to 256.0 mg/100 g. Among the berries, mulberry contained the most abundant total free sugars, and glucose and fructose were the major sugars in the berries. Mulberry contained more than three times as much ${\gamma}-aminobutyric$ acid as the content of the other berries. Blueberry contained more free phenolic acid than the other berries. Especially, chlorogenic acids were the major free phenolic acids in blueberry. Black raspberry had the highest amount of polyphenols, anthocyanins, and flavonoids among the berries and showed the highest antioxidant activity.

국내에서 주로 재배되는 대표적인 베리류에 대한 화학 조성 및 기능성을 알아보고자 일정 시기에 수확한 오디, 블랙라즈 베리, 라즈베리, 블루베리의 pH, 산도, 유리당, ${\gamma}-aminobutyric$acid(GABA), 무기질 함량, phenolic compound, 항산 화 활성을 조사하여 비교하였다. 베리류 4종의 pH는 3.3~5.2로 블루베리가 가장 낮았고 오디가 가장 높은 반면, 산도는 0.26~1.10%(w/w)로 오디가 가장 낮았고 블랙라즈 베리가 가장 높았다. 베리류에서 검출된 유리당인 fructose와 glucose는 같은 비율로 존재하였고, 그 총량은 4.80~12.93%(w/w)로 오디가 가장 높았으며 블랙라즈베리가 가장 낮았다. GABA는 오디에 69.3 mg/100 g이 함유되어 있었는데, 이는 다른 베리류에 비해 3배 이상 많은 양이다. 베리류에 함유된 주요 무기질은 칼륨, 칼슘, 마그네슘이었고, 총 무기질 함량은 92.9~256.0 mg/100 g으로 블랙라즈 베리에 유의적으로 높게 함유되어 있었으며(P<0.05) 블루베리가 가장 낮았다. Total polyphenol과 total flavonoid 함량은 각각 198.2~547.2 mg/100 g과 5.0~94.6 g/100 g의 범위로 블랙라즈베리가 가장 높았고, 라즈베리는 유의적으로 가장 낮았다(P<0.05). Total anthocyanin은 19.8~385.6 mg/100 g의 범위로 블랙라즈베리가 가장 높았고, 라즈베리가 유의적으로 낮았다(P<0.05). Total PA(phenolic acids)는 블랙라즈베리와 라즈베리에 각각 14.0 mg/kg과 5.9 mg/kg이 함유되어 있었는데 이는 오디에 함유된 50.4 mg/kg보다 낮았으며, 391.4 mg/kg으로 가장 높게 함유된 블루베리에는 PA의 대부분이 chlorogenic acid였다. 베리류 4종의 항산화 활성을 DPPH 및 ABTS free radical scavenging activity를 분석하여 Trolox equivalent 값으로 나타낸 결과 Trolox equivalent antioxidant capacity와 total polyphenol, total anthocyanin, total flavonoid 함량 과는 유의적인 양(+)의 상관관계(Pearson 상관계수 r${\geq}0.85$; P<0.01)를 나타내었고, 블랙라즈베리가 DPPH 및 ABTS 항산화 활성이 가장 우수하였다.

Keywords

References

  1. Lee HY. 2013. Approval of functional ingredient of health/functional foods in Korea. Food Industry and Nutrition 18(1): 1-7.
  2. Yu OK, Kim JE, Cha YS. 2008. The quality characteristics of jelly added with Bokbunja (Rubus coreanus Miquel). J Korean Soc Food Sci Nutr 37: 792-797. https://doi.org/10.3746/jkfn.2008.37.6.792
  3. Lee HR, Jung BR, Park JY, Hwang IW, Kim SK, Choi JU, Lee SH, Chung SK. 2008. Antioxidant activity and total phenolic contents of grape juice products in the Korean market. Korean J Food Preserv 15: 445-449.
  4. Bagchi D, Sen CK, Bagchi M, Atalay M. 2004. Anti-angiogenic, antioxidant, and anti-carcinogenic properties of a novel anthocyanin-rich berry extract formula. Biochemistry (Moscow) 69: 75-80. https://doi.org/10.1023/B:BIRY.0000016355.19999.93
  5. Badjakov I, Nikolova M, Gevrenova R, Kondakova V, Todorovska E, Atanassov A. 2008. Bioactive compounds in small fruits and their influence on human health. Biotechnol Biotechnol Equip 22: 581-587. https://doi.org/10.1080/13102818.2008.10817517
  6. Seeram NP, Adams LS, Zhang Y, Lee R, Sand D, Scheuller HS, Heber D. 2006. Blackberry, black raspberry, blueberry, cranberry, red raspberry, and strawberry extracts inhibit growth and stimulate apoptosis of human cancer cells in vitro. J Agric Food Chem 54: 9329-9339. https://doi.org/10.1021/jf061750g
  7. Moyer RA, Hummer KE, Finn CE, Frei B, Wrolstad RE. 2002. Anthocyanins, phenolics, and antioxidant capacity in diverse small fruits: Vaccinium, Rubus, and Ribes. J Agric Food Chem 50: 519-525. https://doi.org/10.1021/jf011062r
  8. Lee HH, Moon YS, Yun HK, Park PJ, Kwak EJ. 2014. Contents of bioactive constituents and antioxidant activities of cultivated and wild raspberries. Kor J Hort Sci Technol 32: 115-122.
  9. Korea Forest Service. 2010. Forestry Business Survey Report I: Medicinal plants cultivation area. Daejeon, Korea. p 10.
  10. Mikulic-Petkovsek M, Schmitzer V, Slatnar A, Stampar F, Veberic R. 2012. Composition of sugars, organic acids, and total phenolics in 25 wild or cultivated berry species. J Food Sci 77: C1064-1070. https://doi.org/10.1111/j.1750-3841.2012.02896.x
  11. Kim EO, Lee YJ, Leem HH, Seo IH, Yu MH, Kang DH, Choi SW. 2010. Comparison of nutritional and functional constituents, and physicochemical characteristics of mulberry from seven different Morus alba L. cultivars. J Korean Soc Food Sci Nutr 39: 1467-1475. https://doi.org/10.3746/jkfn.2010.39.10.1467
  12. Oh HH, Hwang KT, Kim MY, Lee HK, Kim SZ. 2008. Chemical characteristics of raspberry and blackberry fruits produced in Korea. J Korean Soc Food Sci Nutr 37: 738-743. https://doi.org/10.3746/jkfn.2008.37.6.738
  13. Jun HI, Kim YA, Kim YS. 2014. Antioxidant activities of Rubus coreanus Miquel and Morus alba L. fruits. J Korean Soc Food Sci Nutr 43: 381-388. https://doi.org/10.3746/jkfn.2014.43.3.381
  14. Chung HJ. 2014. Comparison of total polyphenols, total flavonoids, and biological activities of black chokeberry and blueberry cultivated in Korea. J Korean Soc Food Sci Nutr 43: 1349-1356. https://doi.org/10.3746/jkfn.2014.43.9.1349
  15. Jeong CH, Choi SG, Heo HJ. 2008. Analysis of nutritional compositions and antioxidative activities of Korean commercial blueberry and raspberry. J Korean Soc Food Sci Nutr 37: 1375-1381. https://doi.org/10.3746/jkfn.2008.37.11.1375
  16. Singleton VL, Orthofer R, Lamuela-Raventos RM. 1999. Analysis of total phenols and other oxidation substrate and antioxidants by means of Folin-Ciocalteu reagent. Methods Enzymol 299: 152-178. https://doi.org/10.1016/S0076-6879(99)99017-1
  17. AOAC International. 2005. AOAC official methods of analysis. 18th ed. Association of Official Analytical Chemists, Rockville, MD, USA. p 37-39.
  18. Korea Food and Drug Administration. 2013. Health Functional Food Code Testing Methods. Cheongju, Korea. p 307-309.
  19. Brand-Williams W, Cuvelier ME, Berset C. 1995. Use of a free radical method to evaluate antioxidant activity. LWT-Food Sci Technol 28: 25-30. https://doi.org/10.1016/S0023-6438(95)80008-5
  20. Re R, Pellegrini N, Proteggente A, Pannala A, Yang M, Rice-Evans C. 1999. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic Biol Med 26: 1231-1237. https://doi.org/10.1016/S0891-5849(98)00315-3
  21. Ercisli S, Orhan E. 2007. Chemical composition of white (Morus alba), red (Morus rubra) and black (Morus nigra) mulberry fruits. Food Chem 103: 1380-1384. https://doi.org/10.1016/j.foodchem.2006.10.054
  22. Lee HW, Shin DH, Lee WC. 1998. Morphological and chemical characteristics of mulberry (Morus) fruit with varieties. Korean J Seric Sci 40: 1-7.
  23. Amerine MA, Merg HW, Kunkee RE, Ough CS, Singleton VL, Webb AD. 1980. Red table wine production. In The Technology of Wine Making. 4th ed. AVI Publishing Company Inc., Westport, CT, USA. p 359-380.
  24. Kim JM, Shin M. 2011. Characteristics of Rubus coreanus Miq. fruits at different ripening stages. Korean J Food Sci Technol 43: 341-347. https://doi.org/10.9721/KJFST.2011.43.3.341
  25. Bown AW, Shelp BJ. 1997. The metabolism and functions of ${\gamma}$-aminobutyric acid. Plant Physiol 115: 1-5.
  26. Connor AM, Luby JJ, Tong CBS, Finn CE, Hancock JF. 2002. Genotypic and environmental variation in antioxidant activity, total phenolic content, and anthocyanin content among blueberry cultivars. J Am Soc Hort Sci 127: 89-97.
  27. Bassoli BK, Cassolla P, Borba-Murad GR, Constantin J, Salgueiro-Pagadigorria CL, Bazotte RB, da Silva RS, de Souza HM. 2008. Chlorogenic acid reduces the plasma glucose peak in the oral glucose tolerance test: effects on hepatic glucose release and glycaemia. Cell Biochem Funct 26:320-328. https://doi.org/10.1002/cbf.1444

Cited by

  1. Estimated Dietary Anthocyanin Intakes and Major Food Sources of Koreans vol.27, pp.4, 2017, https://doi.org/10.17495/easdl.2017.8.27.4.378
  2. Changes in physicochemical properties of mulberry fruits ( Morus alba L.) during ripening vol.217, 2017, https://doi.org/10.1016/j.scienta.2017.01.042
  3. Bioactive Component Analysis, Antioxidant Activity, and Cytotoxicity on Cancer Cells on Rubus crataegifolius Clones by Region vol.105, pp.2, 2016, https://doi.org/10.14578/jkfs.2016.105.2.193
  4. Nutritional Compositions and Physicochemical Properties of Two Domestic Aronia (A. melanocarpa) Varieties vol.29, pp.2, 2016, https://doi.org/10.9799/ksfan.2016.29.2.283
  5. Comparison of proximate compositions, antioxidant, and antiproliferative activities between blueberry and Sageretia thea (Osbeck) M.C.Johnst fruit produced in Jeju Island vol.60, pp.2, 2017, https://doi.org/10.3839/jabc.2017.027
  6. Comparison of Bioactive Constituents and Biological Activities of Aronia, Blackcurrant, and Maquiberry vol.45, pp.8, 2016, https://doi.org/10.3746/jkfn.2016.45.8.1122
  7. 국내외 시판 농산물 중간소재의 총페놀, 총플라보노이드, 총안토시아닌 함량 및 항산화 활성 vol.44, pp.3, 2016, https://doi.org/10.4014/mbl.1606.06003
  8. 효소처리에 의한 블루베리 음료 생산을 위한 최적추출조건 vol.24, pp.1, 2015, https://doi.org/10.11002/kjfp.2017.24.1.60
  9. GABA, a non-protein amino acid ubiquitous in food matrices vol.4, pp.1, 2018, https://doi.org/10.1080/23311932.2018.1534323
  10. 마키베리 추출물의 화장품 신규 원료로서의 가능성 vol.62, pp.4, 2015, https://doi.org/10.3839/jabc.2019.047
  11. 딸기 품종별 추출물의 항산화활성 및 지표성분 밸리데이션 vol.51, pp.6, 2019, https://doi.org/10.9721/kjfst.2019.51.6.517
  12. Challenges and Prospects of New Plant Breeding Techniques for GABA Improvement in Crops: Tomato as an Example vol.11, pp.None, 2015, https://doi.org/10.3389/fpls.2020.577980
  13. Evaluation of the Biological Activities of Berries as an Inner Beauty Ingredient vol.18, pp.3, 2020, https://doi.org/10.20402/ajbc.2020.0051
  14. In vitro macrophage activation by Sageretia thea fruits through TLR2/TLR4-dependent activation of MAPK, NF-κB and PI3K/AKT signalling in RAW264.7 cells vol.32, pp.1, 2015, https://doi.org/10.1080/09540105.2020.1857339
  15. Black raspberry ( Rubus occidentalis ) attenuates inflammatory markers and vascular endothelial dysfunction in Wistar rats fed a high‐fat diet with fructose solution vol.45, pp.10, 2015, https://doi.org/10.1111/jfbc.13917