DOI QR코드

DOI QR Code

Potent whitening effects of rutin metabolites

루틴 대사체의 미백 효능

  • Kim, Ji Hye (School of Food Science and Biotechnology, Kyungpook National University) ;
  • Kang, Nam Joo (School of Food Science and Biotechnology, Kyungpook National University)
  • 김지혜 (경북대학교 식품공학부 식품소재공학전공) ;
  • 강남주 (경북대학교 식품공학부 식품소재공학전공)
  • Received : 2015.07.14
  • Accepted : 2015.07.24
  • Published : 2015.08.30

Abstract

The aim of this research was to investigate the whitening effects of rutin and rutin metabolites including 3,4-dihydroxyphenyl acetic acid (DHPAA), 3-hydroxyphenyl acetic acid (HPAA), 3,4-dihydroxytolene (DHT) and homovanillic acid (HVA). The potent whitening effect of rutin and rutin metabolites were determined by mushroom tyrosinase inhibition assay and expressed as the half maximal inhibitory concentration ($IC_{50}$) against tyrosinase activity in vitro. The HVA showed the highest inhibitory effect ($IC_{50}=37.10{\mu}M$) of tyrosinase activity, followed by DHPAA ($IC_{50}=45.87{\mu}M$), HPAA ($IC_{50}=50.96{\mu}M$), rutin ($IC_{50}=57.98{\mu}M$), and DHT ($IC_{50}=66.09{\mu}M$), respectively. To evaluate cell cytotoxicity, MTT assay was performed with JB6 P+ mouse epidermal cells and expressed as a relative percentage of untreated control. The results showed that rutin and rutin metabolites had no cytotoxic effects on JB6 P+ cells up to $100{\mu}M$ except for DHT (up to $50{\mu}M$). These results suggests that rutin metabolites may be utilized as a potential tyrosinase inhibitors and the whitening agents for the future.

본 연구는 rutin 및 rutin 대사체인 DHPAA, HPAA, DHT, HVA가 버섯 유래 tyrosinase 활성과 마우스 피부표피 세포주인 JB6 P+ 세포의 증식에 미치는 영향에 대해 살펴보았다. HVA가 버섯유래 티로시나제 저해활성이 가장 우수한 것으로 관찰되었으며, DHPAA, HPAA, rutin, DHT 순서로 저해효능을 나타내었다. DHT를 제외한 rutin 및 rutin 대사체들 모두 $100{\mu}M$ 까지 세포 독성이 관찰되지 않은 것으로 관찰되었으며, DHT는 50 또는 $100{\mu}M$에서 세포증식을 저해하였으나 그 이하의 농도에서는 세포독성을 유도하지 않았다. 따라서 본 연구결과, rutin 대사체 모두 세포 독성이 없는 수준에서 버섯 유래 티로시나제 활성을 효과적으로 억제하였으므로, 앞으로 미백제제로 활용될 수 있을 것으로 기대된다.

Keywords

References

  1. Agar N, Young AR (2005) Melanogenesis : a photoprotective response to DNA damage? Mutation Res, 1, 121-132
  2. Ando H, Kondoh H, Ichihashi M, Hearing VJ (2007) Approaches to identify inhibitors of melanin biosynthesis via the quality control of tyrosinase. J Invest Dermatol, 127, 751-761 https://doi.org/10.1038/sj.jid.5700683
  3. Solano F, Briganti S, Picardo M, Ghanem G (2006) Hypopigmenting agents : an updated review on biological, chemical and clinical aspects. Pigment Cell Res, 19, 550-571 https://doi.org/10.1111/j.1600-0749.2006.00334.x
  4. Kreft I, Fabjan N, Yasumoto K (2006) Rutin content in buckwheat (Fagopyrum esculentum Moench) food materials and products. Food Chem, 98, 508-512 https://doi.org/10.1016/j.foodchem.2005.05.081
  5. Li L, Henry GE, Seeram NP (2009) Identification and bioactivities of resveratrol oligomers and flavonoids from Carex folliculata seeds. J Agric Food Chem, 26, 7282-7287
  6. Maria A, Valentina B (2009) Rutin content in plant products. J Univ Chem Technol Metallurgy, 44, 2
  7. Jaganath IB, Mullen W, Lean ME, Edwards CA, Crozier A (2009) In vitro catabolism of rutin by human fecal bacteria and the antioxidant capacity of its catabolites. Free Radic Biol Med, 47, 1180-1189 https://doi.org/10.1016/j.freeradbiomed.2009.07.031
  8. Pashikanti S, de Alba DR, Boissonneault GA, Cervantes-Laurean D (2010) Rutin metabolites : novel inhibitors of nonoxidative advanced glycation end products. Free Radic Biol Med, 48, 656-663 https://doi.org/10.1016/j.freeradbiomed.2009.11.019
  9. Chua LS (2013) A review on plant-based rutin extraction methods and its pharmacological activities. J Ethnopharmacol, 150, 805-817 https://doi.org/10.1016/j.jep.2013.10.036
  10. Hwang E1, Park SY, Lee HJ, Sun ZW, Lee TY, Song HG, Shin HS, Yi TH (2014) Vigna angularis water extracts protect against ultraviolet b-exposed skin aging in vitro and in vivo. J Med Food, 17, 1339-1349 https://doi.org/10.1089/jmf.2013.3017
  11. Stipcevic T, Piljac J, Vanden Berghe D (2006) Effect of different flavonoids on collagen synthesis in human fibroblasts. Plant Foods Hum Nutr, 61, 29-34
  12. Si YX1, Yin SJ, Oh S, Wang ZJ, Ye S, Yan L, Yang JM, Park YD, Lee J, Qian GY (2012) An integrated study of tyrosinase inhibition by rutin : progress using a computational simulation. J Biomol Struct Dyn, 29, 999-1012 https://doi.org/10.1080/073911012010525028
  13. Xie LP1, Chen QX, Huang H, Wang HZ, Zhang RQ (2003) Inhibitory effects of some flavonoids on the activity of mushroom tyrosinase. Biochem (Mosc), 68, 487-491 https://doi.org/10.1023/A:1023620501702
  14. An SM, Kim HJ, Kim JE, Boo YC (2008) Flavonoids, taxifolin and luteolin attenuate cellular melanogenesis despite increasing tyrosinase protein levels. Phytother Res, 22, 1200-1207 https://doi.org/10.1002/ptr.2435
  15. Pavlica S, Gebhardt R (2010) Protective effects of flavonoids and two metabolites against oxidative stress in neuronal PC12 cells. Life Sci, 86, 79-86 https://doi.org/10.1016/j.lfs.2009.10.017
  16. Maeda K, Fukuda M, Fujii T (1991) In vitro effectiveness of several whitening cosmetic components in human melanocytes. J Soc Cosmet Chem, 4, 361-368
  17. Chang TS (2012) Natural melanogenesis inhibitors acting through the down-regulation of tyrosinase activity, Materials, 5, 1661-1685 https://doi.org/10.3390/ma5091661
  18. Leyden JJ, Shergill B, Micali G (201) Natural options for the management of hyperpigmentation. J Eur Acad Dermatol Venereol, 25, 1140-1145 https://doi.org/10.1111/j.1468-3083.2011.04130.x
  19. Saito M (2009) Inhibitory effect of quercetin isolated rose hip (Rosa canina L.) against melanogenesis by mouse melanoma cells. Biosci Biotechnol Biochem, 73, 1989-1993 https://doi.org/10.1271/bbb.90181
  20. An SM, Koh JS, Boo YC (2010) p-coumaric acid not only inhibits human tyrosinase activity in vitro but also melanogenesis in cells exposed to UVB. Phytother Res, 24, 1175-1180
  21. Briganti S, Camera E, Picardo M (2003) Chemical and instrumental approaches to treat hyperpigmentation. Pigment Cell Res, 16, 101-110 https://doi.org/10.1034/j.1600-0749.2003.00029.x
  22. Chen WC, Tseng TS, Hsiao NW, Lin YL, Wen ZH, Tsai CC, Lee YC, Lin HH, Tsai KC (2015) Discovery of highly potent tyrosinase inhibitor, T1, with significant anti-melanogenesis ability by zebrafish in vivo assay and computational molecular modeling. Sci Rep, 5, 7995 https://doi.org/10.1038/srep07995
  23. Lerch K (1978) Amino acid sequence of tyrosinase from Neurospora crassa. Proc Natl Acad Sci USA, 75, 3635-3639 https://doi.org/10.1073/pnas.75.8.3635
  24. Kwon BS, Haq AK, Pomerantz SH, Halaban R (1987) Isolation and sequence of a cDNA clone for human tyrosinase that maps at the mouse c-albino locus. Proc Natl Acad Sci USA, 84, 7473-7477 https://doi.org/10.1073/pnas.84.21.7473
  25. Klabunde T, Eicken C, Sacchettini JC, Krebs B (1998) Crystal structure of a plant catechol oxidase containing a dicopper center. Nat Struct Biol, 5, 1084-1090 https://doi.org/10.1038/4193
  26. Galindo JD, Martinez-Liarte JH, Lopez-Ballester JA, Penafiel R, Solano F, Lozano JA (1987) The effect of polyamines on tyrosinase activity. Biochem Int, 15, 1151-1158
  27. Jacobsohn GM, Jacobsohn MK (1992) Incorporation and binding of estrogens into melanin : comparison of mushroom and mammalian tyrosinases. Biochim Biophys Acta, 1116, 173-182 https://doi.org/10.1016/0304-4165(92)90114-A
  28. Funayama M, Arakawa H, Yamamoto R, Nishino T, Shin T, Murao S (1995) Effects of ${\alpha}$- and ${\beta}$-arbutin on activity of tyrosinases from mushroom and mouse melanoma. Biosci Biotech Biochem, 59, 143-144 https://doi.org/10.1271/bbb.59.143
  29. Pastore S, Potapovich A, Kostyuk V, Mariani V, Lulli D, De Luca C, Korkina L (2009) Plant polyphenols effectively protect HaCaT cells from ultraviolet C-triggered necrosis and suppress inflammatory chemokine expression. Ann N Y Acad Sci, 1171, 305-313 https://doi.org/10.1111/j.1749-6632.2009.04684.x
  30. Nagao T, Abe F, Okabe H (2001) Antiproliferative constituents in the plants 7. leaves of Clerodendron bungei and leaves and bark of C. trichotomum. Biol Pharm Bull, 24, 1338-1341 https://doi.org/10.1248/bpb.24.1338
  31. Morita K, Arimochi H, Ohnishi Y (2003) In vitro cytotoxicity of 4-methylcatechol in murine tumor cells : induction of apoptotic cell death by extracellular pro-oxidant action. J Pharmacol Exp Ther, 306, 317-323 https://doi.org/10.1124/jpet.103.050351