DOI QR코드

DOI QR Code

Ameliorating Effects of Atractylodes macrocephala Koidzumi on TNF-α-induced 3T3-L1 Adipocyte Dysfunction

백출추출물이 TNF-α 유도 지방세포염증과 인슐린저항성 회복에 미치는 영향

  • Bin, Chang-Hyun (Department of Meridian and Acupoint, College of Korean Medicine, Dong-Eui University) ;
  • Song, Choon-Ho (Department of Meridian and Acupoint, College of Korean Medicine, Dong-Eui University)
  • 빈창현 (동의대학교 한의과대학 경락경혈학교실) ;
  • 송춘호 (동의대학교 한의과대학 경락경혈학교실)
  • Received : 2015.08.31
  • Accepted : 2015.09.11
  • Published : 2015.09.27

Abstract

Objectives : The present study was designed to investigate effects and molecular mechanisms of Atractylodes macrocephala Koidzumi extracts(AMK) on the improvement of adipocyte dysfunction induced by TNF-${\alpha}$ in 3T3-L1 adipocytes. We examined whether AMK could directly influence the inflammation and insulin resistance in 3T3-L1 adipocytes. Methods : Potential roles of AMK in the lipolysis, production of inflammatory adipokines and ROS, expression and phosphorylation of ERK, JNK, and $I{\kappa}B{\alpha}$ protein, and expression of $PPAR{\gamma}$ and C/EBP${\alpha}$ were investigated in this study. Results : Our data demonstrated that TNF-${\alpha}$ significantly increased lipolysis, levels of MCP-1, IL-6, and ROS and phosphorylation of ERK, JNK, and $I{\kappa}B{\alpha}$ protein, while TNF-${\alpha}$ reduced the expression of $PPAR{\gamma}$ and C/EBP${\alpha}$ in adipocytes, suggesting that TNF-${\alpha}$ induced a condition with the occurrence of inflammation and insulin resistance. Those alterations induced by TNF-${\alpha}$ were prevented by the treatment of AMK. AMK down-regulated the phosphorylation of ERK, JNK, and $I{\kappa}B{\alpha}$ protein and up-regulated the expression of $PPAR{\gamma}$ and C/EBP${\alpha}$ on TNF-${\alpha}$-induced inflammation and insulin resistance. Conclusions : Thus, our results indicate that AMK can be used to prevent from the TNF-${\alpha}$-induced adipocyte dysfunction through MAPK, $NF{\kappa}B$ and $PPAR{\gamma}$ pathways.

Keywords

References

  1. Galic S, Oakhill JS, Steinberg GR. Adipose tissue as an endocrine organ. Molecular and cellular endocrinology. 2010 ; 316(2) : 129-39. https://doi.org/10.1016/j.mce.2009.08.018
  2. Vazquez-Vela ME, Torres N, Tovar AR. White adipose tissue as endocrine organ and its role in obesity. Arch Med Res. 2008 ; 39(8) : 715-28. https://doi.org/10.1016/j.arcmed.2008.09.005
  3. Coppack SW. Pro-inflammatory cytokines and adipose tissue. Proc Nutr Soc. 2001 ; 60(3) : 349-56. https://doi.org/10.1079/PNS2001110
  4. Chen X, Xun K, Chen L, Wang Y. TNF-alpha, a potent lipid metabolism regulator. Cell Biochem Funct. 2009 ; 27(7) : 407-16. https://doi.org/10.1002/cbf.1596
  5. Chen XH, Zhao YP, Xue M, Ji CB, Gao CL, Zhu JG, et al. TNF-alpha induces mitochondrial dysfunction in 3T3-L1 adipocytes. Molecular and cellular endocrinology. 2010 ; 328(1-2) : 63-9. https://doi.org/10.1016/j.mce.2010.07.005
  6. Shin MG. Clinical Herbology. Seoul:Youngrimsa. 1992 : 172-3.
  7. Lee SI, Ahn DK, Shin MG. Clinical Application of Oriental Medicine. Seoul: Sungbosa. 1982 : 358-60.
  8. Hong MH, Kim JH, Bae H, Lee NY, Shin YC, Kim SH, et al. Atractylodes japonica Koidzumi inhibits the production of proinflammatory cytokines through inhibition of the NF-kappaB/IkappaB signal pathway in HMC-1 human mast cells. Archives of pharmacal research. 2010 ; 33(6) : 843-51. https://doi.org/10.1007/s12272-010-0606-6
  9. Shim AR, Dong GZ, Lee HJ, Ryu JH. Atractylochromene Is a Repressor of Wnt/beta-Catenin Signaling in Colon Cancer Cells. Biomol Ther (Seoul). 2015 ; 23(1) : 26-30. https://doi.org/10.4062/biomolther.2014.095
  10. Kim CK, Kim M, Oh SD, Lee SM, Sun B, Choi GS, et al. Effects of Atractylodes macrocephala Koidzumi rhizome on 3T3-L1 adipogenesis and an animal model of obesity. J Ethnopharmacol. 2011 ; 137(1) : 396-402. https://doi.org/10.1016/j.jep.2011.05.036
  11. Han Y, Jung HW, Park YK. The roots of Atractylodes japonica Koidzumi promote adipogenic differentiation via activation of the insulin signaling pathway in 3T3-L1 cells. BMC Complement Altern Med. 2012 ; 12 : 154. https://doi.org/10.1186/1472-6882-12-154
  12. Hare JF, Taylor K. Surface-exposed proteins of 3T3-L1 adipocytes: identification of phosphorylated, insulin-translocated, and recycling proteins. Archives of biochemistry and biophysics. 1992 ; 293(2) : 416-23. https://doi.org/10.1016/0003-9861(92)90414-R
  13. Lange K, Brandt U. Restricted localization of the adipocyte/muscle glucose transporter species to a cell surface-derived vesicle fraction of 3T3-L1 adipocytes. Inhibited lateral mobility of integral plasma membrane proteins in newly inserted membrane areas of differentiated 3T3-L1 cells. FEBS Lett. 1990 ; 276(1-2) : 39-41. https://doi.org/10.1016/0014-5793(90)80501-9
  14. Robinson LJ, Pang S, Harris DS, Heuser J, James DE. Translocation of the glucose transporter (GLUT4) to the cell surface in permeabilized 3T3-L1 adipocytes: effects of ATP insulin, and GTP gamma S and localization of GLUT4 to clathrin lattices. The Journal of cell biology. 1992 ; 117(6) : 1181-96. https://doi.org/10.1083/jcb.117.6.1181
  15. Korea Institute of Oriental Medicine. Korean Medicinal Materials Volume 1. Seoul:GeoBook. 2014 : 350-3.
  16. Rajala MW, Scherer PE. Minireview: The adipocyte--at the crossroads of energy homeostasis, inflammation, and atherosclerosis. Endocrinology. 2003 ; 144(9) : 3765-73. https://doi.org/10.1210/en.2003-0580
  17. Qatanani M, Lazar MA. Mechanisms of obesity-associated insulin resistance: many choices on the menu. Genes & development. 2007 ; 21(12) : 1443-55. https://doi.org/10.1101/gad.1550907
  18. Chen L, Chen R, Wang H, Liang F. Mechanisms Linking Inflammation to Insulin Resistance. Int J Endocrinol. 2015 ; 2015 : 508409.
  19. Park JJ, Chon NR, Lee YJ, Park H. The Effects of an Extract of Atractylodes Japonica Rhizome, SKI3246 on Gastrointestinal Motility in Guinea Pigs. J Neurogastroenterol Motil. 2015 ; 21(3) : 352-60. https://doi.org/10.5056/jnm14112
  20. Yu Y, Jia TZ, Cai Q, Jiang N, Ma MY, Min DY, et al. Comparison of the anti-ulcer activity between the crude and bran-proc essed Atractylodes lancea in the rat model of gastric ulcer induced by acetic acid. J Ethnopharmacol. 2015 ; 160 : 211-8. https://doi.org/10.1016/j.jep.2014.10.066
  21. Zhou Y, Lu L, Li Z, Gao X, Tian J, Zhang L, et al. Antidepressant-like effects of the fractions of Xiaoyaosan on rat model of chronic unpredictable mild stress. J Ethnopharmacol. 2011; 137(1) : 236-44. https://doi.org/10.1016/j.jep.2011.05.016
  22. Kim HG, Ju MS, Park H, Seo Y, Jang YP, Hong J, et al. Evaluation of Samjunghwan, a traditional medicine, for neuroprotection against damage by amyloid-beta in rat cortical neurons. J Ethnopharmacol. 2010 ; 130(3) : 625-30. https://doi.org/10.1016/j.jep.2010.05.040
  23. Chang YH, Kim C, Jung M, Lim YH, Lee S, Kang S. Inhibition of melanogenesis by selina-4(14),7(11)-dien-8-one isolated from Atractylodis Rhizoma Alba. Biol Pharm Bull. 2007 ; 30(4) : 719-23. https://doi.org/10.1248/bpb.30.719
  24. Guilherme A, Virbasius JV, Puri V, Czech MP. Adipocyte dysfunctions linking obesity to insulin resistance and type 2 diabetes. Nat Rev Mol Cell Biol. 2008 ; 9(5) : 367-77. https://doi.org/10.1038/nrm2391
  25. Maury E, Noel L, Detry R, Brichard SM. In vitro hyperresponsiveness to tumor necrosis factor-alpha contributes to adipokine dysregulation in omental adipocytes of obese subjects. The Journal of clinical endocrinology and metabolism. 2009 ; 94(4) : 1393-400. https://doi.org/10.1210/jc.2008-2196
  26. Bruun JM, Lihn AS, Verdich C, Pedersen SB, Toubro S, Astrup A, et al. Regulation of adiponectin by adipose tissue-derived cytokines: in vivo and in vitro investigations in humans. Am J Physiol Endocrinol Metab. 2003 ; 285(3) : E527-33. https://doi.org/10.1152/ajpendo.00110.2003
  27. Mohamed-Ali V, Goodrick S, Rawesh A, Katz DR, Miles JM, Yudkin JS, et al. Subcutaneous adipose tissue releases interleukin-6, but not tumor necrosis factor-alpha, in vivo. The Journal of clinical endocrinology and metabolism. 1997 ; 82(12) : 4196-200. https://doi.org/10.1210/jc.82.12.4196
  28. Fontana L, Eagon JC, Trujillo ME, Scherer PE, Klein S. Visceral fat adipokine secretion is associated with systemic inflammation in obese humans. Diabetes. 2007 ; 56(4) : 1010-3. https://doi.org/10.2337/db06-1656
  29. Xu H, Barnes GT, Yang Q, Tan G, Yang D, Chou CJ, et al. Chronic inflammation in fat plays a crucial role in the development of obesity-related insulin resistance. The Journal of clinical investigation. 2003 ; 112(12) : 1821-30. https://doi.org/10.1172/JCI200319451
  30. Hotamisligil GS. Inflammation and metabolic disorders. Nature. 2006 ; 444(7121) : 860-7. https://doi.org/10.1038/nature05485
  31. Esposito K, Nappo F, Marfella R, Giugliano G, Giugliano F, Ciotola M, et al. Inflammatory cytokine concentrations are acutely increased by hyperglycemia in humans: role of oxidative stress. Circulation. 2002 ; 106(16) : 2067-72. https://doi.org/10.1161/01.CIR.0000034509.14906.AE
  32. Gloire G, Legrand-Poels S, Piette J. NF-kappaB activation by reactive oxygen species: fifteen years later. Biochem Pharmacol. 2006 ; 72(11) : 1493-505. https://doi.org/10.1016/j.bcp.2006.04.011
  33. Houstis N, Rosen ED, Lander ES. Reactive oxygen species have a causal role in multiple forms of insulin resistance. Nature. 2006 ; 440(7086) : 944-8. https://doi.org/10.1038/nature04634
  34. Jain RG, Phelps KD, Pekala PH. Tumor necrosis factor-alpha initiated signal transduction in 3T3-L1 adipocytes. J Cell Physiol. 1999 ; 179(1) : 58-66. https://doi.org/10.1002/(SICI)1097-4652(199904)179:1<58::AID-JCP8>3.0.CO;2-1
  35. Ryden M, Dicker A, van Harmelen V, Hauner H, Brunnberg M, Perbeck L, et al. Mapping of early signaling events in tumor necrosis factor-alpha -mediated lipolysis in human fat cells. The Journal of biological chemistry. 2002 ; 277(2) : 1085-91. https://doi.org/10.1074/jbc.M109498200
  36. Chae GN, Kwak SJ. NF-kappaB is involved in the TNF-alpha induced inhibition of the differentiation of 3T3-L1 cells by reducing PPARgamma expression. Experimental & molecular medicine. 2003 ; 35(5) : 431-7. https://doi.org/10.1038/emm.2003.56
  37. Stephens JM, Lee J, Pilch PF. Tumor necrosis factor-alpha-induced insulin resistance in 3T3-L1 adipocytes is accompanied by a loss of insulin receptor substrate-1 and GLUT4 expression without a loss of insulin receptor-mediated signal transduction. The Journal of biological chemistry. 1997 ; 272(2) : 971-6. https://doi.org/10.1074/jbc.272.2.971
  38. Ruan H, Hacohen N, Golub TR, Van Parijs L, Lodish HF. Tumor necrosis factor-alpha suppresses adipocyte-specific genes and activates expression of preadipocyte genes in 3T3-L1 adipocytes: nuclear factor-kappaB activation by TNF-alpha is obligatory. Diabetes. 2002 ; 51(5) : 1319-36. https://doi.org/10.2337/diabetes.51.5.1319
  39. Hu E, Kim JB, Sarraf P, Spiegelman BM. Inhibition of adipogenesis through MAP kinase-mediated phosphorylation of PPARgamma. Science (New York, NY). 1996 ; 274(5295) : 2100-3. https://doi.org/10.1126/science.274.5295.2100
  40. Stephens JM, Pekala PH. Transcriptional repression of the C/EBP-alpha and GLUT4 genes in 3T3-L1 adipocytes by tumor necrosis factor-alpha. Regulations is coordinate and independent of protein synthesis. The Journal of biological chemistry. 1992 ; 267(19) : 13580-4.

Cited by

  1. Trends of Studies in Korean Journal of Acupuncture vol.33, pp.1, 2015, https://doi.org/10.14406/acu.2016.002
  2. 진무탕(眞武湯)이 MIA 유도 골관절염 흰쥐 모델에 미치는 영향 vol.28, pp.1, 2015, https://doi.org/10.18325/jkmr.2018.28.1.19
  3. 진무탕(眞武湯)이 흰쥐의 대퇴골 골절 치유에 미치는 실험적 연구 vol.30, pp.2, 2015, https://doi.org/10.18325/jkmr.2020.30.2.19
  4. 증미오비탕이 Monosodium Iodoacetate 유발 관절연골손상에 미치는 영향 vol.41, pp.3, 2015, https://doi.org/10.13048/jkm.20030