DOI QR코드

DOI QR Code

Dependence of Structural and Magnetic Properties on Annealing Times in Co-precipitated Cobalt Ferrite Nanoparticles

  • Purnama, Budi (Department of Physics, Faculty of Math and Natural Sciences Sebelas Maret University) ;
  • Rahmawati, Rafika (Department of Physics, Faculty of Math and Natural Sciences Sebelas Maret University) ;
  • Wijayanta, Agung Tri (Department of Mechanical Engineering, Faculty of Engineering Sebelas Maret University) ;
  • Suharyana, Suharyana (Department of Physics, Faculty of Math and Natural Sciences Sebelas Maret University)
  • Received : 2015.06.19
  • Accepted : 2015.08.05
  • Published : 2015.09.30

Abstract

Modifications in the structural and magnetic properties of co-precipitated cobalt ferrite nanoparticles can be accomplished by varying the annealing time periods during the synthetic process. Experimental results show that high-purity cobalt ferrite nanoparticles are obtained using a co-precipitation process. The dependence of the crystallite sizes on the annealing time was successfully demonstrated using XRD and SEM. Finally, vibrating sample magnetometer analyses show that the magnetic properties of the cobalt ferrite nanoparticles depend on their relative particle sizes.

Keywords

References

  1. P. Jeppson, R. Sailer, E. Jarabek, J. Sandstrom, B. Anderson, M. Bremer, D. G. Grier, D. L. Schulz, A. N. Caruso, S. A. Payne, P. Eames, M. Tondra, H. He and D. B. Chrisey, J. Appl. Phys. 91, 114324 (2006).
  2. Y. Qu, H. Yang, N. Yang, Y. Fan, H. Zhu and G. Zou, Material Lett. 60, 3548 (2006). https://doi.org/10.1016/j.matlet.2006.03.055
  3. K. Maaz, A. Mumtaz, S. K. Hasanain, and A. Ceylan, JMMM. 308, 289 (2007). https://doi.org/10.1016/j.jmmm.2006.06.003
  4. T. Ahmad, H. Bae, Y. Iqbal, I. Rhee, S. Hong, Y. Chang, J. Lee and D. Sohn, JMMM. 381, 151 (2015). https://doi.org/10.1016/j.jmmm.2014.12.077
  5. V. Pasukoniene, A. Mlynska, S. Steponkiene, V. Poderys, M. Matulionyte, V. Karabanovas, U. Statkute, R. Purviniene, J. A. Krasko, A. Jagminas, M. Kurtinaitiene, M. Strioga and R. Rotomskis, Medicina. 50, 237 (2014). https://doi.org/10.1016/j.medici.2014.09.009
  6. M. Ravichandran, G. Oza, S. Velumani, J. T. Ramirez, F. Garcia-Sierra, N. B. Andrade, M. A. Garza-Navarro, D. I. Garcia-Gutierrez and R. Asomoza, Material Lett. 135, 67 (2014). https://doi.org/10.1016/j.matlet.2014.07.154
  7. M. Houshiar, F. Zebhi, Z. J. Razi, A. Alidoust and Z. Askari, JMMM. 371, 43 (2014). https://doi.org/10.1016/j.jmmm.2014.06.059
  8. K. Sinko, E. Manek, A. Meiszterics, K. Havancsa'k, U. Vainio and H. Peterlik, J. Nanopart Res. 14, 894 (2012). https://doi.org/10.1007/s11051-012-0894-5
  9. R. Ianos, Materials Lett. 135, 24 (2014). https://doi.org/10.1016/j.matlet.2014.07.126
  10. S. Laurent, D. Forge, M. Port, A. Roch, C. Robic, L. V. Elst and R. N. Muller, Chem. Rev. 108, 2064 (2010).
  11. K. K. Mohaideen and P. A. Joy, JMMM. 371, 121 (2014). https://doi.org/10.1016/j.jmmm.2014.07.013
  12. T. P. Raming, A. J. A. Winnubst, C. M. van Kats and A. P. Philipse, J. Colloid Interface Sci. 249, 346 (2002). https://doi.org/10.1006/jcis.2001.8194
  13. R. D. Waldron, Phys. Rev. 99, 1727 (1955). https://doi.org/10.1103/PhysRev.99.1727

Cited by

  1. Mössbauer studies on cation distributions and superexchange interactions in Cu0.2Fe2.8O4 vol.68, pp.3, 2016, https://doi.org/10.3938/jkps.68.403
  2. Effects of the synthesis temperature on the crystalline structure and the magnetic properties of cobalt ferrite nanoparticles prepared via coprecipitation vol.69, pp.4, 2016, https://doi.org/10.3938/jkps.69.584
  3. Characterization of partially-inverted zinc ferrite with a bio-plasma treatment vol.69, pp.5, 2016, https://doi.org/10.3938/jkps.69.847
  4. nanoparticles prepared by sol-gel autocombustion method pp.1546542X, 2017, https://doi.org/10.1111/ijac.12832
  5. XRD and FTIR analysis of bismuth substituted cobalt ferrite synthesized by co-precipitation method vol.1153, pp.1742-6596, 2019, https://doi.org/10.1088/1742-6596/1153/1/012057