DOI QR코드

DOI QR Code

Effect of Sintering Temperature on the Micro Strain and Magnetic Properties of Ni-Zn Nanoferrites

  • Venkatesh, D. (Center for Materials Research, Department of Physics, GIT, GITAM University) ;
  • Siva Ram Prasad, M. (Department of Physics, M.V.G.R College of Engineering) ;
  • Rajesh Babu, B. (Department of Physics, GVP College of Engineering for Women) ;
  • Ramesh, K.V. (Center for Materials Research, Department of Physics, GIT, GITAM University) ;
  • Trinath, K. (Naval Science and Technological Laboratory, DRDO)
  • Received : 2015.01.24
  • Accepted : 2015.06.12
  • Published : 2015.09.30

Abstract

In this study, nanocrystalline ferrite powders with the composition $Ni_{0.5}Zn_{0.5}Fe_2O_4$ were prepared by the autocombustion method. The obtained powders were sintered at $800^{\circ}C$, $900^{\circ}C$ and $1,000^{\circ}C$ for 4 h in air atmosphere. The as-prepared and the sintered powders were characterized by X-ray diffraction (XRD), Fourier transform infrared (FT-IR) spectroscopy, and magnetization studies. An increase in the crystallite size and a slight decrease in the lattice constant with sintering temperature were observed, whereas microstrain was observed to be negative for all the samples. Two significant absorption bands in the wave number range of the $400cm^{-1}$ to $600cm^{-1}$ have been observed in the FT-IR spectra for all samples which is the distinctive feature of the spinel ferrites. The force constants were found to vary with sintering temperature, suggesting a cation redistribution and modification in the unit cell of the spinel. The M-H loops indicate smaller coercivity, which is the typical nature of the soft ferrites. The observed variation in the saturation magnetization and coercivity with sintering temperature has been attributed to the role of surface, inhomogeneous cation distribution, and increase in the crystallite size.

Keywords

References

  1. S. Dey, S. K. Dey, B. Ghosh, P. Dasgupta, A. Poddar, V. R. Reddy, and S. Kumar, J. Appl. Phys. 114, 093901 (2013). https://doi.org/10.1063/1.4819809
  2. A. Yang, C. N. Chinnasamy, J. M. Greneche, Y. Chen, S. D. Yoon, Z. Chen, K. Hsu, Z. Cai, K. Ziemer, C. Vittoria, and V. G. Harris, Nanotechnology 20, 185704 (2009). https://doi.org/10.1088/0957-4484/20/18/185704
  3. V. Sepelak, A. Feldhoff, P. Heitjians, F. Krumeich, D. Menzel, F. J. Litterst, I. Bergmann, and K. D. Becker, Chem. Mater. 18, 3057 (2006). https://doi.org/10.1021/cm0514894
  4. J. Jacob and M. A. Khadar, J. Appl. Phys. 107, 114310 (2010). https://doi.org/10.1063/1.3429202
  5. C. Upadhyay, H. C. Verma, V. Sathe, and A. V. Pimplae, J. Magn. Magn. Mater. 312, 271 (2007). https://doi.org/10.1016/j.jmmm.2006.10.448
  6. M. S. R. Prasad, B. B. V. S. V. Prasad, B. Rajesh, K. H. Rao, and K. V. Ramesh, J. Magn. Magn. Mater. 323, 2115 (2011). https://doi.org/10.1016/j.jmmm.2011.02.029
  7. Z. Beji, L. S. Smiri, N. Yaacoub, J. M. Greneche, N. Menguy, S. Ammar, and F. Fievet, Chem. Mater. 22, 1350 (2010). https://doi.org/10.1021/cm901969c
  8. S. Gubbala, H. Nathani, K. Koizol, and R. D. K. Misra, Physica B 348, 317 (2004). https://doi.org/10.1016/j.physb.2003.12.017
  9. S. Thakur, S. C. Katyal, A. Gupta, V. R. Reddy, S. K. Sharma, M. Knobel, and M. Singh, J. Phys. Chem. C. 113, 20785 (2009). https://doi.org/10.1021/jp9050287
  10. C. Upadhyay, H. C. Verma, and S. Anand, J. Appl. Phys. 95, 5746 (2004). https://doi.org/10.1063/1.1699501
  11. B. T. Naughton, P. Majewski, and D. R. Clarke, J. Am. Ceram. Soc. 90, 3547 (2007). https://doi.org/10.1111/j.1551-2916.2007.01981.x
  12. M. S. R. Prasad, B. R. Babu, K. V. Ramesh, and K. Trinath, J. Supercond. Nov. Magn. 27, 2735 (2014). https://doi.org/10.1007/s10948-014-2637-6
  13. JCPDS Card No. 08-0234
  14. Principles of X-Ray Diffraction, B. D. Cullity, S. R. Stock, Prentice Hall Inc. (2001).
  15. A. S. Albuquerque, J. D. Ardisson, W. A. A. Macedo, and M. C. M. Alves, J. Appl. Phys. 87, 4352 (2000). https://doi.org/10.1063/1.373077
  16. X-Ray Diffraction - A Practical Approach, C. Suryanarayana and M. Grant Norton, Plenum Press (1998).
  17. M. George, A. M. John, S. S. Nair, P. A. Joy, and M. R. Anantharaman, J. Magn. Magn. Mater. 302, 190 (2006). https://doi.org/10.1016/j.jmmm.2005.08.029
  18. C. Liu and Z. J. Zhang, Chem. Mater. 13, 2092 (2001). https://doi.org/10.1021/cm0009470
  19. R. H. Kodama, A. E. Berkowitz, E. J. McNiff, Jr., and S. Foner, Phys. Rev. Lett. 77, 394 (1996). https://doi.org/10.1103/PhysRevLett.77.394
  20. M. Muroi, R. Street, P. G. McCormick, and J. Amighian, Phys. Revi. B 63, 184414 (2001). https://doi.org/10.1103/PhysRevB.63.184414
  21. R. Swaminathan, J. Woods, S. Calvin, J. Huth, and M. E. McHenry, Adv. Sci. Tech. 45, 2337 (2006). https://doi.org/10.4028/www.scientific.net/AST.45.2337
  22. R. Swaminathan, M. E. McHenry, S. Calvin, M. Sorescu, and L. Diamandescu: Proc. ICF-9, Amer. Ceram. Soc. 847 (2005).
  23. G. A. Petitt and D. W. Forester, Phys. Rev. B 4, 3912 (1971). https://doi.org/10.1103/PhysRevB.4.3912
  24. K. B. Modi, T. K. Pathak, N. H. Vasoya, V. K. Lakhani, G. J. Baldha, and P. K. Jha, Ind. J. Phys. 85, 411 (2011). https://doi.org/10.1007/s12648-011-0051-5
  25. S. Bedanta and W. Kleeman, J. Phys. D: Appl. Phys. 42, 13001 (2009). https://doi.org/10.1088/0022-3727/42/1/013001
  26. M. Dessai, S. Prasad, N. Venkataramani, I. Samajdar, A. Nigam, K. Keller, N. Krishnan, R. B. Saitovitch, E. M. Pujada, and B. R. A. Rossi, J. Appl. Phys. 91, 7592 (2002). https://doi.org/10.1063/1.1447504
  27. Introduction to magnetic materials, B. D. Cullity, and C. D. Graham, Wiley-IEEE Press (2008).
  28. K. E. Sickafus and J. M. Wills, J. Am. Ceram. Soc. 82, 3279 (1999).
  29. V. K. Lakhani and K. B. Modi, J. Phys. D: Appl. Phys. 44, 245403 (2011). https://doi.org/10.1088/0022-3727/44/24/245403
  30. R. H. Kadam, A. P. Birajdar, S. T. Alone, and S. E. Shirsath, J. Magn. Magn. Mater. 327, 167 (2013). https://doi.org/10.1016/j.jmmm.2012.09.059
  31. S. M. Patange, S. E. Shirsath, S. S. Jadhav, and K. M. Jadhav, Phys. Status Solidi A 209, 347 (2012). https://doi.org/10.1002/pssa.201127232
  32. M. Inagaki and S. Naka, J. Inorg. Nuc. Chem. 35, 3009 (1973). https://doi.org/10.1016/0022-1902(73)80531-7
  33. Magnetic Ceramics by Raul Valenzula, Cambridge University Press (1994).
  34. H. St.C. O'Neill, and A. Navrotsky, American Minerologist 68, 181 (1983).
  35. R. D. Waldron, Phys. Rev. 99, 1727 (1955). https://doi.org/10.1103/PhysRev.99.1727
  36. M. C. Chhantbar, U. N. Trivedi, P. V. Tanna, H. J. Shah, R. P. Vara, H. H. Joshi, and K. B. Modi, Indian J. Phys. 78, 321 (2004).
  37. S. S. Bhatu, V. K. Lakhani, A. R. Tanna, N. H. Vasoya, J. U. Buch, P. U. Sharma, U. N. Trivedi, H. H. Joshi, and K. B. Modi, Ind. J. Pure Appl. Phys. 45, 596 (2007).

Cited by

  1. nanocrystalline ferrites vol.31, pp.22, 2017, https://doi.org/10.1142/S0217979217501533
  2. Crystallographic and magnetic properties of the hyperthermia material CoFe2O4@AlFe2O4 vol.70, pp.2, 2017, https://doi.org/10.3938/jkps.70.173