DOI QR코드

DOI QR Code

Mössbauer Spectroscopic Studies of NiZn Ferrite Prepared by the Sol-Gel Method

  • Niyaifar, Mohammad (Department of Physics, Ahvaz Branch, Islamic Azad University) ;
  • Mohammadpour, Hory (Department of Physics, Ahvaz Branch, Islamic Azad University) ;
  • Rodriguez, Anselmo F.R. (Universidade Federal do Acre, Centro de Ciencias Biologicas e da Natureza Rio Branco)
  • Received : 2015.06.27
  • Accepted : 2015.08.18
  • Published : 2015.09.30

Abstract

This study was aimed to study the effect of Zn content on the hyperfine parameters and the structural variation of $Ni_{1-x}Zn_xFe_2O_4$ for x = 0, 0.2, 0.4, 0.6, and 0.8. To achieve this, a sol-gel route was used for the preparation of samples and the obtained ferrites were investigated by X-ray diffraction, scanning electron microscopy, and $M{\ddot{o}}ssbauer$ spectroscopy. The formation of spinel phase without any impurity peak was identified by X-ray diffraction of all the samples. Moreover, the estimated crystallite size by X-ray line broadening indicates a decrease with increasing Zn content. This result was in agreement with the scanning electron microscopy result, indicating the reduction in grain growth with further zinc substitution. The room-temperature $M{\ddot{o}}ssbauer$ spectra show that the hyperfine fields at both the A and B sites decreased with increasing Zn content; however, the rate of reduction is not the same for different sites. Moreover, the best fit parameter showed that the quadrupole splitting values of B site increased from the pure nickel ferrite to the sample with x = 0.8.

Keywords

References

  1. M. M. Mallapur, P. A. Shaikh, R. C. Kambale, H. V. Jamadar, P. U. Mahamuni, and B. K. Chougule, J. Alloys Compd. 479, 797 (2009). https://doi.org/10.1016/j.jallcom.2009.01.142
  2. M. Ishaque, M. U. Islam, M. A. Khan, I. Z. Rahman, A. Genson, and S. Hampshire, Physica B 405, 1532 (2010). https://doi.org/10.1016/j.physb.2009.12.035
  3. R. Valenzuela, Phys. Res. Int. 2012, 1 (2012).
  4. P. Yadoji, R. Peelamedu, D. Agrawal, and R. Roy, Mater. Sci. Eng. B 98, 269 (2003). https://doi.org/10.1016/S0921-5107(03)00063-1
  5. A. M. Shaikh, C. M. Kanmadi, and B. K. Chougule, J. Mater. Chem. Phys. 93, 548 (2005). https://doi.org/10.1016/j.matchemphys.2005.04.005
  6. T. Nakamura, J. Magn. Magn. Mater. 168, 285 (1997). https://doi.org/10.1016/S0304-8853(96)00709-3
  7. T. Tsutaoka, J. Appl. Phys. 93, 2789 (2003). https://doi.org/10.1063/1.1542651
  8. M. F. F. Lelis, A. O. Porto, C. M. Goncalves, and J. D. Fabris, J. Magn. Magn. Mater. 278, 263 (2004). https://doi.org/10.1016/j.jmmm.2003.12.1313
  9. C. M. B. Henderson, J. M. Charnock, and D. A. Plant, J. Phys.: Condens. Matter 19, 076214/1 (2007).
  10. M. M. Rashad, E. M. Elsayed, M. M. Moharam, and R. M. Abou-Shahba, A. E. Saba, J. Alloys. Compd. 486, 759 (2009). https://doi.org/10.1016/j.jallcom.2009.07.051
  11. M. Atif, M. Nadeem, R. Grossinger, and R. Sato Turtelli, J. Alloys Compd. 509, 5720 (2011). https://doi.org/10.1016/j.jallcom.2011.02.163
  12. A. S. Fawzi, A. D. Sheikh, and V. L. Mathe, J. Alloys Compd. 502, 231 (2010). https://doi.org/10.1016/j.jallcom.2010.04.152
  13. J. M. Daniels and A. Rosencwaig, Can. J. Phys. 48, 381 (1970). https://doi.org/10.1139/p70-054
  14. M. Jalaly, M. H. Enayati, P. Kameli, and F. Karimzadeh, Physica B 405, 507 (2010). https://doi.org/10.1016/j.physb.2009.09.044
  15. Y. Qu, H. Yang, N. Yang, Y. Fan, H. Zhu, and G. Zou, J. Mater. Lett. 60, 3548 (2006). https://doi.org/10.1016/j.matlet.2006.03.055
  16. K. Maaz, S. Karim, A. Mumtaz, S. K. Hasanain, J. Liu, and J. L. Duan, J. Magn. Magn. Mater. 321, 1838 (2009). https://doi.org/10.1016/j.jmmm.2008.11.098
  17. X. Li and G. Wang, J. Magn. Magn. Mater. 321, 1276 (2009). https://doi.org/10.1016/j.jmmm.2008.11.006
  18. X. Li, Q. Li, Z. Xia, and W. Yan, J. Alloys Compd. 458, 558 (2008). https://doi.org/10.1016/j.jallcom.2007.04.214
  19. H. W. Wang and S. C. Kung, J. Magn. Magn. Mater. 270, 230 (2004). https://doi.org/10.1016/j.jmmm.2003.09.019
  20. V. K. Sankaranarayanan and C. Sreekumar, Curr. Appl. Phys. 3, 205 (2003). https://doi.org/10.1016/S1567-1739(02)00202-X
  21. A. Kumar, M. C. Varma, C. L. Dube, K. H. Rao, and S. C. Kashyap, J. Magn. Magn. Mater. 320, e370 (2008). https://doi.org/10.1016/j.jmmm.2008.02.159
  22. H. E. Zhang, B. F. Zhang, G. F. Wang, X. H. Dong, and Y. Gao, J. Magn. Magn. Mater. 312, 126 (2007). https://doi.org/10.1016/j.jmmm.2006.09.016
  23. S. Yan, J. Geng, L. Yin, and E. Zhou, J. Magn. Magn. Mater. 277, 84 (2004). https://doi.org/10.1016/j.jmmm.2003.10.014
  24. S. Zahi, M. Hashim, and A. R. Daud, J. Magn. Magn. Mater. 308, 177 (2007). https://doi.org/10.1016/j.jmmm.2006.05.033
  25. A. Verma, T. C. Goel, R. G. Mendiratta, and P. Kishan, J. Magn. Magn. Mater. 208, 13 (2000). https://doi.org/10.1016/S0304-8853(99)00585-5
  26. A. Verma, O. P. Thakur, C. Prakash, T. C. Goel, and R. G. Mendiratta, Mater. Sci. Eng. B 116, 1 (2005). https://doi.org/10.1016/j.mseb.2004.08.011
  27. S. Thakar, S. C. Katyal, and M. Singh, J. Magn. Magn. Mater. 321, 1 (2009). https://doi.org/10.1016/j.jmmm.2008.07.009
  28. R. D. Shannon and C. T. Prewitt, Acta Cryst. B 26, 1046 (1970). https://doi.org/10.1107/S0567740870003576
  29. I. H. Gul, W. Ahmwd, and A. Maqsood, J. Magn. Magn. Mater. 320, 270 (2008). https://doi.org/10.1016/j.jmmm.2007.05.032
  30. A. Navrotsky and O. J. Kleppa, J. Inorg. Nucl. Chem. 30, 479 (1968). https://doi.org/10.1016/0022-1902(68)80475-0
  31. R. F. Strickland Constable, Kinetics and Mechanism of Crystallization, Academic, New York (1968).
  32. C. Upadhyay and H. C. Verma, J. Appl. Phys. 95, 5751 (2004).
  33. J. Smit, F. K. Lotgering, and R. P. Van Stapele, J. Phys. Soc. Japan Suppl. 17, 268 (1962).
  34. M. De Marco, X. W. Wang, R. L. Snyder, J. Simmins, S. Bayya, and M. White, J. Appl. Phys. 73, 6287 (1993). https://doi.org/10.1063/1.352672
  35. D. E. Nagle, H. Frauenfelder, R. D. Taylor, D. R. F. Cochran, and B. T. Matthias, Phys. Rev. Lett. 5, 364 (1960). https://doi.org/10.1103/PhysRevLett.5.364
  36. R. E. Watson and A. J. Freeman, Phys. Rev. 123, 2027 (1961). https://doi.org/10.1103/PhysRev.123.2027
  37. S. Geller, H. J. Williams, R. C. Sherwood, and G. P. Espinosa, J. Phys. Chem. Solids 23, 1525 (1962). https://doi.org/10.1016/0022-3697(62)90231-7
  38. P. G. Bercoff and H. R. Bertorello, J. Magn. Magn. Mater. 213, 56 (2000). https://doi.org/10.1016/S0304-8853(00)00011-1
  39. G. F. Dionne, J. Appl. Phys. 41, 4874 (1970). https://doi.org/10.1063/1.1658555
  40. S. I. Youssef, M. G. Natera, R. J. Begum, B. S. Srinivasan, and N. S. Satya Murthy, J. Phys. Chem. Solids 30, 1941 (1969). https://doi.org/10.1016/0022-3697(69)90170-X
  41. R. Ingalls, Phys. Rev. 133, A787 (1964). https://doi.org/10.1103/PhysRev.133.A787
  42. C. M. Yagnik and H. B. Mathur, Mol. Phys. 16, 625 (1969). https://doi.org/10.1080/00268976900100701

Cited by

  1. Magnetism and Structure Evolution in Ni-Zn Ferrites Thin Films - CEMS Study vol.131, pp.4, 2017, https://doi.org/10.12693/APhysPolA.131.836
  2. Crystallographic and magnetic properties of the hyperthermia material CoFe2O4@AlFe2O4 vol.70, pp.2, 2017, https://doi.org/10.3938/jkps.70.173