DOI QR코드

DOI QR Code

캐비테이션 벤츄리의 유동 특성에 대한 실험적 연구

An Experimental Study on Flow Characteristics of Cavitation Venturi

  • Yoon, Wonjae (School of Mechanical Engineering, Chungbuk National University) ;
  • Ahn, Kyubok (School of Mechanical Engineering, Chungbuk National University)
  • 투고 : 2015.06.17
  • 심사 : 2015.07.10
  • 발행 : 2015.08.01

초록

캐비테이션 벤츄리는 후단 압력에 상관없이 액체의 유량을 일정하게 유지시켜주는 장치로, 일정한 추진제 유량의 공급을 필요로 하는 액체로켓엔진 시스템에 성공적으로 사용되고 있다. 본 연구에서는 축소되는 유입각과 팽창하는 출구각 만이 다른 네 개의 캐비테이션 벤츄리를 설계, 제작하였다. 압력을변경시켜가며 벤츄리를 통과하는 유량과 전/후단의 압력을 측정하였다. 실험결과로부터 각 벤츄리에 대한 유량계수와 임계 압력비를 계산하였다. 캐비테이션 벤츄리의 입구각과 출구각은 유량계수에 영향을 주었으며, 출구각은 임계 압력비에도 영향을 주는 것을 확인하였다.

A cavitation venturi is a device that allows a liquid flow rate to be fixed or locked independent of a downstream pressure and has been successfully used in a liquid rocket engine system which requires a stable propellant flow rate. In the present research, four cavitation venturis which have same dimensions except for converging inlet angle and diverging outlet angle, were designed and manufactured. Flow rates through each venturi and upstream/downstream pressures were measured by changing the pressures. From the experimental data, the discharge coefficients and critical pressure ratios were calculated for each venturi. It was found that the inlet and outlet angles of the cavitation venturi affected the discharge coefficient, and the outlet angle influenced on the critical pressure ratio.

키워드

참고문헌

  1. Ghassemi, H. and Fasih, H.F., "Application of Small Size Cavitating Venturi as Flow Controller and Flow Meter," Flow Measurement and Instrumentation, Vol. 22, Issue 5, pp. 406-412, 2011. https://doi.org/10.1016/j.flowmeasinst.2011.05.001
  2. Brennen, C.E., Cavitation and Bubble Dynamics, Oxford Engineering Science Series, Oxford, UK, 1995.
  3. Kieffer, S.W., "Sound Speed in Liquid-Gas Mixtures: Water-Air and Water-Steam," Journal of Geophysical Research, Vol. 82, No. 20, pp. 2895-2904, 1977. https://doi.org/10.1029/JB082i020p02895
  4. Ashrafizadeh, S.M. and Ghassemi, H., "Experimental and Numerical Investigation on the Performance of Small-Sized Cavitating Venturis," Flow Measurement and Instrumentation, Vol. 42, pp. 6-15, 2015. https://doi.org/10.1016/j.flowmeasinst.2014.12.007
  5. Ulas, A., "Passive Flow Control in Liquid-Propellant Rocket Engines with Cavitating Venturi," Flow Measurement and Instrumentation, Vol. 17, Issue 2, pp. 93-97, 2006. https://doi.org/10.1016/j.flowmeasinst.2005.10.003
  6. Kang, D., Ahn, K., Lim, B., Han, S., Choi, H.S., Seo, S. and Kim, H., "Flow Control Characteristics of the Cavitating Venturi," Proceedings of the 2013 KSPE Spring Conference, Busan, Korea, pp. 139-146, May 2013.
  7. Kang, D., Ahn, K., Lim, B., Han, S., Choi, H.S., Seo, S. and Kim, H., "Flow Control Characteristics of Cavitating Venturi in a Liquid Rocket Engine Test Facility," Journal of the Korean Society of Propulsion Engineers, Vol. 18, No. 3, pp. 84-91, 2014. https://doi.org/10.6108/KSPE.2014.18.3.084
  8. Ahn, K., Han, Y.M., Seo, S. and Choi, H.W., "Effects of Injector Recess and Chamber Pressure on Combustion Characteristics of Liquid-Liquid Swirl Coaxial Injectors," Combustion Science and Technology, Vol. 183, Issue 3, pp. 252-270, 2011.
  9. Randall, L.N., "Rocket Applications of the Cavitating Venturi," Journal of the American Rocket Society, Vol. 22, No. 1, pp. 28-38, 1952. https://doi.org/10.2514/8.4412
  10. Fox, Z., "Cavitating Venturis and Sonic Nozzles," National Conference on Fluid Power, Chicago, USA, pp. 127-133, Oct. 1977.
  11. Xu, C. and Heister, S.D., "Modeling Cavitating Venturi Flows," Journal of Propulsion and Power, Vol. 18, No. 6, pp. 1227-1234, 2002. https://doi.org/10.2514/2.6057
  12. Cho, W.K., Moon, Y.W., Kwon, O.S. and Cho, I.H., "Flow Rate Control Characteristics of a Cavitating Venturi in a Liquid Rocket Propellant Feed System," The Korean Society for Aeronautical & Space Sciences, Vol. 30, No. 6, pp. 46-52, 2002.
  13. Idelchik, I.E., Handbook of Hydraulic Resistance, 3th ed., Begell House, Danbury, USA, 1996.