DOI QR코드

DOI QR Code

Soot 입자를 고려한 로켓 플룸의 적외선 스펙트럼 예측

A Prediction of Infrared Spectrum of Rocket Plume with Considering Soot Particles

  • Jo, Sung Min (Department of Aerospace Engineering, Korea Advanced Institute of Science and Technology) ;
  • Nam, Hyun Jae (The 1st R&D Institute, Agency for Defense Development) ;
  • Kim, Duk Hyun (PGM R&D Lab., LIG Nex1 Co. Ltd.) ;
  • Kwon, Oh Joon (Department of Aerospace Engineering, Korea Advanced Institute of Science and Technology)
  • 투고 : 2015.06.02
  • 심사 : 2015.07.10
  • 발행 : 2015.08.01

초록

본 연구에서는 복사 데이터베이스 기반의 LBL 모델과 근사 이론에 기초한 입자의 영향이 고려된 로켓 플룸의 적외선 스펙트럼 예측을 수행하였다. 로켓 플룸 내에 존재하는 가스 분자의 스펙트럼을 예측하기 위하여 고해상도 복사 데이터베이스를 이용하였다. 로켓 플룸 내에 존재하는 입자는 수트 입자로 모델링 하였으며 미 이론의 1항 근사 및 레일리 근사를 적용하였다. 두 이론의 적용에 대한 타당성을 검증하였으며, 이를 바탕으로 로켓 플룸의 적외선 스펙트럼을 예측하였다. 수트 입자의 영향을 고려함으로써 짧은 파장 영역 대에서 향상된 로켓 플룸의 스펙트럼 예측 결과가 도출되었다.

In the present study, numerical predictions of infrared spectrum of rocket plume with considering effect of particles based on approximation theories were performed by using a line-by-line radiation model with radiation databases. The high-resolution radiation databases were used to predict thermal emission spectra of gas molecules within the rocket plume regime. The particles were modeled as soot particles by using 1st term approximation of Mie theory and Rayleigh approximation. The reliability of modeled effect of soot particles using the two approximation theories was verified, and the spectral radiance of rocket plume was predicted based on the verification. The results were improved in the short wavelength range by considering the effect of soot particles.

키워드

참고문헌

  1. Rothman, L.S., Rinsland, C.P., Goldman, A., Massie, S.T., Edwards, D.P., Flaud, J.-M., Perrin, A. et al., "The HITRAN Molecular Spectroscopic Database and HAWKS (HITRAN Atmospheric Workstation): 1996 Edition," Journal of Quantitative Spectroscopy and Radiative Transfer, Vol. 60, Issue 5, pp. 665-710, 1998. https://doi.org/10.1016/S0022-4073(98)00078-8
  2. Rothman, L.S., Gordon, I.E., Barbe, A., Chris Benner, D., Bernath, P.F., Birk, M., Boudon, V., Brown, L.R., Compargue, A., Champion, J.-P., Chance, K., Coudert, L.H., Dana, V., Devi, V.M., Fally, S., Flaud, J.-M., Gamache, R.R., Goldman, A. et al., "The HITRAN 2008 Molecular Spectroscopic Database," Journal of Quantitative Spectroscopy and Radiative Transfer, Vol. 110, Issue 9-10, pp. 533-572, 2009. https://doi.org/10.1016/j.jqsrt.2009.02.013
  3. Rothman, L.S., Gordon, I.E., Barber, R.J., Dothe, H., Gamache, R.R., Goldman, A., Perevalov, V.I., Tashkum, S.A. and Tennyson, J., "HITEMP, the High-temperature Molecular Spectroscopic Database," Journal of Quantitative Spectroscopy and Radiative Transfer, Vol. 111, Issue 15, pp. 2139-2150, 2010. https://doi.org/10.1016/j.jqsrt.2010.05.001
  4. Tashkun, S.A. and Perevalov, V.I., "CDSD-4000: High-resolution, High-temperature Carbon Dioxide Spectroscopic Databank," Journal of Quantitative Spectroscopy and Radiative Transfer, Vol. 112, Issue 9, pp. 1403-1410, 2011. https://doi.org/10.1016/j.jqsrt.2011.03.005
  5. Jansons, M., Lin, S. and Rhee, K.T., "Infrared Spectral Analysis of Engine Preflame Emission," International Journal of Engine Research, Vol. 9, pp. 215-237, 2011.
  6. Ozawa, T., Garrison, M.B. and Levin, D.A., "Accurate Molecular and Soot Infrared Radiation Model for High-temperature Flows," Journal of Thermophysics and Heat Transfer, Vol. 21, Issue 1, pp. 19-27, 2007. https://doi.org/10.2514/1.19137
  7. Deimling, L., Liehmann, W., Eisenreich, N., Weindel, M. and Eckl, W., "Radiation Emitted from Rocket Plumes," Propellants Explosives, Pyrotechnics, Vol. 22, Issue 3, pp. 152-155, 1997. https://doi.org/10.1002/prep.19970220310
  8. Modest, M.F., Radiative Heat Transfer, 2nd ed., Academic Press, Massachusetts, USA, 2003.
  9. Chang, H. and Charalampopoulos, T.T., "Determination of the Wavelength Dependence of Refractive Indices of Flame Soot," Mathematical, Physical & Engineering Sciences, Vol. 430, Issue 1880, pp. 577-591, 1990. https://doi.org/10.1098/rspa.1990.0107
  10. Ayranci, I., Vaillon, R., Selcuk, N., Andre, F. and Escudie, D., "Determination of Soot Temperature, Volume Fraction and Refractive Index from Flame Emission Spectrometry," Journal of Quantitative Spectroscopy and Radiative Transfer, Vol. 104, Issue 2, pp. 266-276, 2007. https://doi.org/10.1016/j.jqsrt.2006.07.013
  11. Van de Hulst, H.C., Light Scattering by Small Spheres, John Wiley & Sons, Inc., New York, NY., USA, 1957.
  12. Changsik, K., Lior, N. and Okuyama, K., "Simple Mathematical Expressions for Spectral Extinction and Scattering Properties of Small Size-parameter Particles, Including Examples for Soot and $TiO_2$," Journal of Quantitative Spectroscopy and Radiative Transfer, Vol. 55, Issue 3, pp. 391-411, 1996. https://doi.org/10.1016/0022-4073(95)00160-3
  13. Fischer, J., Gamache, R.R., Goldman, A., Rothman, L.S. and Perrin, A., "Total Internal Partition Sums for Molecular Species in the 2000 Edition of the HITRAN Database," Journal of Quantitative Spectroscopy and Radiative Transfer, Vol. 82, No. 1, pp. 401-412, 2003. https://doi.org/10.1016/S0022-4073(03)00166-3
  14. Wang, A. and Modest, M.F., "Importance of Combined Lorentz-Doppler Broadening in High-Temperature Radiative Heat Transfer Applications," Journal of Heat Transfer, Vol. 126, Issue 5, pp. 858-861, 2004. https://doi.org/10.1115/1.1798951
  15. Humlicek, J., "Optimized Computation of the Voigt and Complex Probability Functions," Journal of Quantitative Spectroscopy and Radiative Transfer, Vol. 27, Issue 4, pp. 437-444, 1982. https://doi.org/10.1016/0022-4073(82)90078-4
  16. Lee, S.C. and Tien, C.L., "Optical Constants of Soot in Hydrocarbon Flames," International Symposium on Combustion, Vol. 18, Issue 1, pp. 1159-1166, 1980.
  17. Bharadwaj, S.P. and Modest, M.F., "Medium Resolution Transmission Measurements of Water Vapor at High Temperature," Journal of Heat Transfer, Vol. 128, Issue 4, pp. 374-381, 2006. https://doi.org/10.1115/1.2165209
  18. Bharadwaj, S.P. and Modest, M.F., "Medium Resolution Transmission Measurements of $CO_2$ at High Temperature-an Update," Journal of Quantitative Spectroscopy and Radiative Transfer, Vol. 103, Issue 1, pp. 146-155, 2007. https://doi.org/10.1016/j.jqsrt.2006.05.011
  19. Abu-Romia, M.M. and Tien, C.L., "Measurements and Correlations of Infrared Radiation of Carbon Monoxide at Elevated Temperatures," Journal of Quantitative Spectroscopy and Radiative Transfer, Vol. 6, Issue 2, pp. 143-167, 1966. https://doi.org/10.1016/0022-4073(66)90034-3
  20. Simmons, F.S., Arnold, C.B. and Lindquist, G.H., "Measurement of Temperature Profiles in Flames by Emission-Absorption Spectroscopy," NASA-CR-120894, 1972.
  21. Nam, H.J. and Kwon, O.J., "Infrared Radiation Modeling of NO, OH, CO, H2O, and CO2 for Emissivity/Radiance Prediction at High Temperature," Infrared Physics and Technology, Vol. 67, pp. 283-291, 2014. https://doi.org/10.1016/j.infrared.2014.08.003