DOI QR코드

DOI QR Code

HBDP 네트워크에서 대역폭 점유와 RTT 공정성 향상을 위한 네트워크 적응적 혼잡제어 기법

Network Adaptive Congestion Control Scheme to Improve Bandwidth Occupancy and RTT Fairness in HBDP Networks

  • 오준열 (광운대학교 전자통신공학과) ;
  • 정광수 (광운대학교 전자통신공학과)
  • 투고 : 2015.06.08
  • 심사 : 2015.07.13
  • 발행 : 2015.09.15

초록

오늘날 네트워크는 높은 대역폭과 높은 지연을 갖는 HBDP (High Bandwidth Delay Product) 네트워크의 특징을 보인다. 기존 TCP는 혼잡윈도우 크기의 느린 증가와 급격한 감소로 인하여 HBDP 네트워크에 부적절하다. 기존 TCP의 문제점을 해결하기 위해 연구된 TCP들은 손실기반 TCP와 지연기반 TCP로 구분한다. 대다수의 TCP는 기존 Slow Start 동작을 사용하며 오버슈트로 인한 대량의 패킷 손실을 초래한다. Congestion Avoidance 동작의 경우 손실기반 TCP는 대역폭 낭비와 RTT (Round Trip Time) 공정성 문제가 있으며 지연기반 TCP는 낮고 느린 대역폭 점유 문제가 있다. 제안하는 기법은 병목구간의 버퍼상태를 통해 혼잡제어를 함으로써 Slow Start와 Congestion Avoidance의 문제를 개선한다. 성능평가를 통해 HBDP 네트워크에서 제안하는 기법이 기존 TCP보다 향상된 성능을 보임을 확인하였다.

These days, the networks have exhibited HBDP (High Bandwidth Delay Product) characteristics. The legacy TCP slowly increases the size of the congestion window and drastically decreases the size of a congestion window. The legacy TCP has been found to be unsuitable for HBDP networks. TCP mechanisms for solving the problems of the legacy TCP can be categorized into the loss-based TCP and the delay-based TCP. Most of the TCP mechanisms use the standard slow start phase, which leads to a heavy packet loss event caused by the overshoot. Also, in the case of congestion avoidance, the loss-based TCP has shown problems of wastage in terms of the bandwidth and RTT (Round Trip Time) fairness. The delay-based TCP has shown a slow increase in speed and low occupancy of the bandwidth. In this paper, we propose a new scheme for improving the over shoot, increasing the speed of the bandwidth and overcoming the bandwidth occupancy and RTT fairness issues. By monitoring the buffer condition in the bottleneck link, the proposed scheme does congestion control and solves problems of slow start and congestion avoidance. By evaluating performance, we prove that our proposed scheme offers better performance in HBDP networks compared to the previous TCP mechanisms.

키워드

과제정보

연구 과제번호 : 방송용 영상 인식 기반 객체 중심 지식융합 미디어 서비스 플랫폼 개발

연구 과제 주관 기관 : 정보통신기술진흥센터

참고문헌

  1. D. Won, Y. Cho, K. Park, and D. Suh, "High Resolution Video Streaming Method by Cloud and DASH," Proc. of the IEEE International Conference on Consumer Electronics, pp. 552-553, Jan. 2014.
  2. G. Thompson and Y. Chen, "IPTV: Reinventing Television in the Internet Age," IEEE Internet Computing, Vol. 12, No. 3, pp. 11-14, May 2009.
  3. Modifying TCP's Congestion Control for High Speeds [Online]. Available: http://www.icir.org/floyd/hstcp.html (downloaded 2014, May 10)
  4. S. Sundaresan, W. de Donato, N. Feamster, R. Teixeira, S. Crawford, and A. Pescape, "Broadband Internet Performance: A View From the Gateway," Proc. of the ACM Special Interest Group on Data Communication, pp. 134-145, Aug. 2011.
  5. V. Kushwaha and Ratneshwer, "An Analysis of Performance Parameters for Congestion Control in High-speed Wired Network," Proc. of the International Conference on Computer and Communication Technology, pp. 133-138, Sep. 2013.
  6. C. Callegari, S. Giordano, M. Pagano, and T. Pepe, "Behavior Analysis of TCP Linux Variants," Computer Networks, Vol. 56, No. 1, pp. 462-476, Jan. 2012. https://doi.org/10.1016/j.comnet.2011.10.002
  7. S. Floyd, "HighSpeed TCP for Large Congestion Windows," RFC 3649, Dec. 2003.
  8. K. Tan, J. Song, Q. Zhang, and M. Sridharan, "A Compound TCP Approach for High-speed and Long Distance Networks," Proc. of the IEEE Infocommunications, pp. 1-12, Apr. 2006.
  9. T. Kelly, "Scalable TCP: Improving Performance in High-Speed Wide Area Networks," ACM Special Interest Group on Data Communication Computer Communication Review, Vol. 33, No. 2, pp. 83-91, Feb. 2003.
  10. S. Ha, I. Rhee, and L. Xu, "CUBIC: A New TCPfriendly High-speed TCP Variant," ACM Special Interest Group on Operating Systems Operating System Review, Vol. 42, No. 5, pp. 64-74, Jul. 2008.
  11. Lawrence S. Brakmo, Sean W. O'Malley, and Larry L. Peterson, "TCP Vegas: New Techniques for Congestion Detection and Avoidance," ACM Special Interest Group on Data Communication Computer Communication Review, Vol. 24, No. 4, pp. 24-35, Oct. 1994.
  12. David X. Wei, Cheng Jin, Steven H. Low, and Sanjay Hegde, "FAST TCP: Motivation, Architecture, Algorithms, Performance," IEEE/ACM Transactions on Networking, Vol. 14, No. 6, pp. 1246-1259, Dec. 2006. https://doi.org/10.1109/TNET.2006.886335
  13. Jim Gettys and Kathleen Nichols, "Bufferbloat: Dark Buffers in the Internet," Queue - Virtualization, Vol. 9, No. 11, pp. 40-55, Nov. 2011.
  14. D. Chiu and R. Jain, "Analysis of the Increase and Decrease Algorithms for Congestion Avoidance in Computer Networks," Computer Networks and ISDN Systems, Vol. 17, No. 1, pp. 1-14, Jun. 1989. https://doi.org/10.1016/0169-7552(89)90019-6
  15. The Network Simulator NS-2 [Online]. Available: http://www.isi.edu/nsnam/ns/ (downloaded 2014, Apr. 10)