DOI QR코드

DOI QR Code

Laser Peening Process and Its Application Technique

레이저 피닝 처리 및 적용 기술

  • Kim, Jong-Do (Division of Marine Engineering, Korea Maritime & Ocean University) ;
  • KUTSUNA, Muneharu (Advanced Laser Technology Research Center Co.,Ltd.) ;
  • SANO, Yuji (Power and Industrial Systems Research and Development Center, Toshiba Corporation)
  • Received : 2015.08.12
  • Accepted : 2015.08.27
  • Published : 2015.08.31

Abstract

Advances in laser technology have yielded a multitude of innovative processes and applications in various industries. Laser peening is a typical example invented in the mid-1990s as a surface technology, which converted residual stress from tension to compression by just irradiating successive laser pulses to metallic materials under aqueous environment without any surface preparation. The effects of laser peening have been experimentally studied on residual stress, stress corrosion cracking(SCC) susceptibility and fatigue properties with water-penetrable frequency-doubled Nd:YAG laser. In addition, laser peening has been widely used in aviation and aerospace industries, automobile manufacturing and nuclear plant. One of the most important causes to improve the above-mentioned properties is the deeper compressive residual stress induced by laser peening. Taking advantage of the process without reacting force against laser irradiation, a remote operating system was developed to apply laser peening to nuclear power reactors as a preventive maintenance measure against SCC.

Keywords

References

  1. A. Kruusing, Optics and Lasers in Engineering, 41 (2004), 307-327 https://doi.org/10.1016/S0143-8166(02)00142-2
  2. T. Thorslund, F.-J. Kahlen and A. Kar, Optics and Lasers in Engineering, 39 (2003), 51-71 https://doi.org/10.1016/S0143-8166(02)00040-4
  3. C.S. Montross, T. Wei, L. Ye, G. Clark and Y.-W. Mai, Int. J. Fatigue, 24 (2002), 1021-1036 https://doi.org/10.1016/S0142-1123(02)00022-1
  4. A.H. Clauer and D.F. Lahrman, Key Eng. Materials, 197 (2001), 121-144 https://doi.org/10.4028/www.scientific.net/KEM.197.121
  5. Y.J.Fan, Y.N.Wang, S.Vukelic and Y.L.Yao, Proc. ICALEO, Oct.31-Nov.3 (2005), 479-488
  6. 佐野雄二, 依田正樹, 向井成彦, 小畑稔, 菅野眞紀, 嶋誠之, 日本原子力學會誌, 42 (2000), 567-573 (in Japanese)
  7. A. Demma, G. Frederick and C. King : Proc. 6th Int. Symp. on Contribution of Materials Investigations to Improve the Safety and Performance of LWRs, September (2006)
  8. 沓名 宗春, 日本溶接協會 特殊材料溶接硏究委員會 (2007) (in Japanese)
  9. R. Fabbro, J. Fournier, P. Ballard, D. Devaux and J. Virmont, J. Appl. Phys., 68 (1990), 775-784 https://doi.org/10.1063/1.346783
  10. A.H.Clauer, C.T.Walters, S.C.Ford : ASM Conference on Applications of Laser in Material Precessing, Los Angeles (1983), 7
  11. D.Devaux, R.Fabbro, L.Tollier, E.Bartnicki, J.Appl : Phys. 74 (1993), 2268 https://doi.org/10.1063/1.354710
  12. Warren AW, Guo YB, Chen SC., Int J Fatigue, 30 (2008), 188-97 https://doi.org/10.1016/j.ijfatigue.2007.01.033
  13. Rubio - Gonzalez C, Ocana JL, Gomez-Rosas G, Molpeceres C, Paredes M, Banderas A, et al., Mater Sci Eng, A 386 (2004), 291-5 https://doi.org/10.1016/j.msea.2004.07.025
  14. Dorman M, Toparli MB, Smyth N, Cini A, Fitzpatrick ME, Irving PE, Mater Sci Eng, 548 (2012), 142-51 https://doi.org/10.1016/j.msea.2012.04.002
  15. Montross CS, Wei T, Ye L, Clark G, Mai YW, Int J Fatigue, 24 (2002), 1021-36 https://doi.org/10.1016/S0142-1123(02)00022-1
  16. Zhang XC, Zhang YK, LuJ Z, Xuan FZ, Wang ZD, Tu ST, Mater Sci Eng, 527 (2010), 3411-5 https://doi.org/10.1016/j.msea.2010.01.076
  17. C. Correa, L. Ruiz de Lara, M. Diaz, A. Gil-Santos, J.A. Porro, J.L. Ocana, International Journal of Fatigue, 79 (2015), 1-9 https://doi.org/10.1016/j.ijfatigue.2015.04.018
  18. S. Sathyajith, S.Kalainathan n, S.Swaroop, Optics & Laser Technology, 45 (2013), 389-394 https://doi.org/10.1016/j.optlastec.2012.06.019
  19. E. Maawada, Y. Sanob, L. Wagnera, H.-G. Brokmeiera, Ch. Genzelc, Materials Science and Engineering, A 536 (2012), 82- 91 https://doi.org/10.1016/j.msea.2011.12.072
  20. 依田正樹, 佐野雄二, 向井成彦, T. Schmidt- Uhlig and G. Marowsky : レ一ザ一硏究, 28 (2000), 309-313 (in Japanese)
  21. T. Schmidt-Uhlig, P. Karlitschek, G. Marowsky and Y. Sano: Appl. Phys. B, 72 (2001), 183-186 https://doi.org/10.1007/s003400000462
  22. Lloyd A. Hacke l : proc. of SAIL, June 2-4, Williamsburg, US, Paper (2003), #sec6-05
  23. Y. Sano, M. Obata, T. Kubo, N. Mukai, M. Yoda, K. Masaki and Y. Ochi, Mater. Sci. Eng. A, 417 (2006), 334-340 https://doi.org/10.1016/j.msea.2005.11.017
  24. Y. Sano, M. Obata and T. Yamamoto, Welding International, 20 (2006), 598-601 https://doi.org/10.1533/wint.2006.3624
  25. Y. Sano, M. Kimura, K. Sato, M. Obata, A. Sudo, Y. Hamamoto, S. Shima, Y. Ichikawa, H. Yamazaki, M. Naruse, S. Hida, T. Watanabe and Y. Oono : Proc. 8th Int. Conf. on Nuclear Engineering (ICONE-8), Baltimore, April (2000)
  26. Y. Sano, N. Mukai, M. Yoda, T. Uehara, I. Chida and M. Obata : Proc. Int. Conf. on Application of Photonic Technology (Photonics North 2006, SPIE6343), Quebec City, June (2006)
  27. ショットピ一ニング技術協會編著 : 金屬疲勞とショットピ一ニング, 現代工學社, 東京(2004). (in Japanese)
  28. Rockstroh : Proc. of ICALEO' 2005, Miami, FL, Oct31-Nov3 (2005), 703-709