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Introduction

Muscular dystrophies are genetic disorders caused

by abnormalities in various genes (Aartsma-Rus et

al, 2006; Dalkilic and Kunkel, 2003; Emery, 2002a;

Fokkema et al, 2005). Among them, a mutation of

dystrophin gene coding for the protein dystrophin

causes Duchenne muscular dystrophy (DMD), which

affects 1 in 3,300∼6,000 boys (Emery, 1991; Emery,

2002b; Mendell et al, 2012). The dystrophin protein

is an intricate part of the dystrophin-associated pro-

tein complex and links subsarcolemmal cytoskeleton

and extracellular matrix (Ibraghimov-Beskrovnaya et

al, 1992; Ozawa et al, 2001; Rybakova et al, 1996;

Sutherland-Smith et al, 2003). It is also an essen-

tial structural component of the muscle membrane,

and provides mechanical stability in skeletal mus-

cle (Mizuno et al, 1994; Moens et al, 1993;

Ohlendieck et al, 1993; Petrof et al, 1993). That is,

a mutation in the dystrophin gene breaks the dys-

trophin-associated protein complex supporting in-

tegrity of the skeletal muscle membrane and

transmitting force. Additionally, the fragility caused

by the absence of the dystrophin protein is ag-

gravated by repeated intensive contraction because

the muscle fibers are unable to endure eccentric

contraction without structural integrity (Allen and

Whitehead, 2011; Brussee et al, 1997; Deconinck

and Dan, 2007; Petrof et al, 1993). An increase in

skeletal muscle fatty tissue and severe muscle

atrophy is observed as the child ages and then

ambulatory loss is seen at around 8∼12 years

(Beltran et al, 2015; Brooke et al, 1989; Bushby et

al, 2010; Desguerre et al, 2009; Moxley et al, 2010;
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Muscular dystrophy is a hereditary musculoskeletal disorder caused by a mutation in the dystrophin
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Pardo et al, 2011). Ultimately, premature death oc-

curs in the early twenties due to cardiac and res-

piratory muscle failure (Fraser et al, 2012; Lovering

et al, 2005). It is very important to detect patho-

logical changes in skeletal muscle before functional

declines so that intervention can begin as early as

possible.

Invasive Measurement

Muscle biopsy today is a widely accepted assess-

ment tool to diagnose and measure the disease pro-

gression in DMD (Maunder-Sewry et al, 1980).

However, this invasive tool is limited to only a small

amount of tissue at a time and narrow limits.

Additionally, it has been demonstrated that a

DMD-affected muscle has different characteristics

and progression varying by muscle region in a single

muscle. The bigger issue is that the muscle biopsy

may not be effective to evaluate the cardiopulmonary

system, where monitoring is especially important in

the late stages of the disease. Therefore, various

non-invasive techniques involving X-rays, computed

tomography (CT), and magnetic resonance imaging

(MRI) are currently promoted as alternatives to the

invasive method. These alternatives can be used

without temporal and spatial limitations as they al-

low longitudinal measurements covering the entire

body.

Non-Invasive Measurements

Plain X-ray

X-ray equipment is among the most frequently

used, inexpensive, convenient, and old-fashioned tool

in many clinical setting. The X-rays can penetrate

objects, but the amount of X-rays reaching the de-

tector varies according to the object being filmed

(McKinnis, 2013) (Figure 1). For example, bones

containing higher calcium absorb more X-rays than

muscles and appear white on X-ray film while mus-

cles show up in shades of gray. X-ray film provides

enough resolution in shades of white and black to

interpret pathological changes and abnormalities in

bones and joints, but it is limited to an anatomic

view of body structure. The limitations of X-rays in

the diagnosis of disease led to the advent of CT,

which provides a clear, well-contrasting cross-sec-

tional image even between skeletal muscles in the

body.

Computed tomography

CT, also known as X-ray CT, CT scanning, or

computerized axial tomography scanning, provides a

higher quality of tomographic images using many

X-ray images (Heckmatt and Dubowitz, 1983). Unlike

simple X-rays, CT shows cross-sectional images of

a target object without overlapping various objects

on a single image. Additionally, pathological changes

in muscle can be cleary and easily verified on

Figure 1. Anatomy in four primary shades of grey.
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high-resolution and high-contrast images. Recent ad-

vances in technology allow 3-dimensional images of

tumors, hemorrhaging, and even coronary arteries

(Goodpaster et al, 2000; Jones et al, 1983; Liu et al,

1993; Termote et al, 1980). Due to the quality of the

images, it has been used for much clinical research

in preventive medicine as well. However, imaging

tools based on X-ray penetration use ionizing radia-

tion, which comes with the risk of undesirable side

effects.

Magnetic resonance imaging

Unlike X-ray imaging tools, MRI does not expose

the target to radiation. The magnetic resonance (MR)

image was first introduced as a one-dimensional im-

age in 1952 by Herman Carr, whereas current MRI

provides the opportunity to quantify fatty infiltration,

inflammation and edema in muscle using T1- and

T2-weighted MR techniques (Carr and Purcell, 1954;

Garrood et al, 2009; Goodpaster et al, 2004;

Lamminen, 1990; Matsumura et al, 1988).

T1-weighted imaging has proven to be extensively

in agreement with measurement of morphologic

changes in muscle (Akima et al, 2012; Mathur et al,

2010). Generally, the size of skeletal muscle is strong-

ly related with muscle function. Thus, T1-weighted

imaging provides cross-sectional area (CSA) imaging

of muscle and has been invaluable in medical

diagnosis. However, muscle size does not directly

correlate to the muscle function in DMD. Wokke and

colleagues have shown that in boys aged 8∼15 with

DMD, the maximal CSA (CSAmax) of the triceps

surae muscle (medial gastrocnemius, lateral gastro-

cnemius, and soleus) was 52% larger, yet the boys

had less functional ability and muscle strength than

the age-matched controls (Wokke et al, 2014). This

paradoxical finding is due to pseudohypertrophy re-

sulting from fatty infiltration and replacement of fi-

brotic tissue in muscle (Grindrod et al, 1983). When

it comes to DMD, the T1-weighted technique is ap-

propriate to measure the proportion of contractile tis-

sue in muscle rather than quantitative measurements

of muscle size (Akima et al, 2012).

MRI is also useful to quantitatively measure mus-

cle quality including biophysical and pathophysio-

logical properties using the T2-weighted MR techni-

Figure 2. The example of T2 decay curve of fat and muscle (TR: repetition time, TE: echo time).
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que (Arpan et al, 2013; Kim et al, 2010) (Figure 2).

Fleckenstein in 1989 found a relationship between

muscle activity and subsequent increase in T2 relax-

ation time (Fleckenstein et al, 1989). After physical

exercise, T2 relaxation time was increased and lasted

for a short time. An exercise-induced increase in T2

relaxation time does not usually last long if the

physical exercise was not intense and/or not

repeated. If the increase in T2 relaxation time is pro-

longed, it might represent muscle inflammation or

edema (Shellock et al, 1991). In the study of Mathur,

T2 relaxation time was increased and lasted for 2

days after eccentric exercise in mdx mice, an animal

model for DMD widely used in pre-clinical settings

(Mathur et al, 2011). It is well known that muscle is

more susceptible to damage (including inflammation

and edema) during eccentric exercise or intensive

exercise (Lovering and Brooks, 2014; Petrof et al,

1993). Intensive muscle contraction leads to muscle

damage due to an absence of the dystrophin protein,

which provides structural integrity and stability to

muscle membrane. The sensitivity of the T2-weighted

MR technique for the differentiation of muscle dam-

age makes it very useful in follow up on disease

progression.

Pathological changes in muscle, including in-

flammation or edema, might be more clearly detect-

able with short-tau inversion recovery (STIR) imag-

ing (Beltran et al, 2015; Tasca et al, 2012) (Figure

3). In young boys with DMD, the edema or in-

flammation is often presented without any fatty

infiltration. The STIR technique increases the sensi-

Figure 3. Magnititude T1 curve in the short tau inversion recovery (STIR) technique.
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tivity of measurement of extracellular water content

suggesting presence of edema and inflammation.

Marden found signal abnormalities from skeletal mus-

cle appearing to be normal muscle on T1-weighted

images using the STIR technique in two boys with

DMD (Marden et al, 2005). Additionally, the STIR

technique makes it easy to discriminate between fat

and muscle by suppressing the signal from fatty tis-

sue so that the examiner can exactly segment mus-

cle CSAmax.

Recently, even lipid fraction and metabolic change

in skeletal muscle have been measured by magnetic

resonance spectroscopy (MRS) in conjunction with

MRI (Felber et al, 2000; Lott et al, 2014; Torriani et

al, 2012). As mentioned above, it is often difficult to

diagnose young boys with DMD or discover pro-

gression of the disease with conventional MRI. A re-

cent study by Forbes reported higher lipid fraction,

measured by MRS, in soleus and vastus lateralis

muscles in young boys with DMD when compared

with controls (Forbes et al, 2014). In Forbes’ study,

MRS proved a very sensitive tool in determining lip-

id fraction because it can provide MR signals from

water and lipid separately and precisely. Additionally,

MRS has been used to study skeletal metabolism in

DMD. Metabolic changes such as glycolytic substrate

glucose, glutamine, and glycolytic product lactate

were significantly lower in those with DMD com-

pared to controls (Sharma et al, 2003). Thus, MRS

can be more powerful for evaluating patients with

DMD when used in conjunction with MRI.

Conclusion

DMD is a life-threatening disease and worsens

more quickly than other muscular dystrophies. There

have been several clinical trials so far, but there is

no current cure. Only glucocorticosteroids have been

accepted as a pharmaceutical agent which can slow

down symptoms of disease progression such as skel-

etal muscle degeneration and loss of muscle tone.

Physical exercise with early medication, unless in-

tensive eccentric exercise, can very helpful to main-

tain functional activity and muscle strength. Since

muscle damage in boys with DMD begins before

functional declines, detecting changes in muscle is of

the utmost importance so that physical therapy can

begin as early as possible. MRI and/or MRS meas-

urements have proven effective in detecting muscle

damage even in the early stages of DMD.
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