CIRCLE-FOLIATED MINIMAL SURFACES IN 4-DIMENSIONAL SPACE FORMS

Sung-Ho Park

Abstract. Catenoid and Riemann’s minimal surface are foliated by circles, that is, they are union of circles. In \(\mathbb{R}^3 \), there is no other non-planar example of circle-foliated minimal surfaces. In \(\mathbb{R}^4 \), the graph \(G_c \) of \(w = c/z \) for real constant \(c \) and \(\zeta \in \mathbb{C} \setminus \{0\} \) is also foliated by circles. In this paper, we show that every circle-foliated minimal surface in \(\mathbb{R}^n \) is either a catenoid or Riemann’s minimal surface in some 3-dimensional Affine subspace or a graph surface \(G_c \) in some 4-dimensional Affine subspace. We use the property that \(G_c \) is circle-foliated to construct circle-foliated minimal surfaces in \(S^4 \) and \(H^4 \).

1. Introduction

A surface \(M \in \mathbb{R}^n \) is said to be circle-foliated if there is a one-parameter family of planes whose intersection with \(M \) are circles. The catenoid and Riemann’s minimal surface are examples of circle-foliated minimal surfaces in \(\mathbb{R}^3 \). Enneper proved that the planes containing the circles of a circle-foliated minimal surface in \(\mathbb{R}^3 \) should be parallel [2] and [7]. Then it is easy to see that the plane, catenoid and Riemann’s minimal surface are the only circle-foliated minimal surfaces in \(\mathbb{R}^3 \) [7].

One may consider \(\mathbb{R}^4 \) as \(\mathbb{C}^2 \) with complex coordinates \((z, w) \). For a real constant \(c \neq 0 \), the graph \(G_c = \{(w, z) \in \mathbb{C}^2 | wz = c\} \) is circle-foliated. In fact, the image \(g_r \) of the circle \(\{|z| = r\} \) on the \(z \)-plane is \(\{(z, c/z) | |z| = r\} \). Considering \(\mathbb{C}^2 \) as \(\mathbb{R}^4 \), \(g_r \) lies on the plane through \((0, 0, 0, 0) \), \((1, 0, -r^2, 0) \) and \((0, 1, 0, r^2) \) (cf. Remark 2). Since \(|(z, c/z)|^2 = r^2 + c^2/r^2 \), \(g_r \) is a circle. Therefore \(G_c \) is circle-foliated. Since every complex submanifold of a Kaehler manifold is minimal [6], \(G_c \) is minimal. Moreover, \(G_c \) is complete, doubly-connected and has finite total curvature \(-4\pi\) with two planar ends, which are asymptotic to the planes \(\{z = 0\} \) and \(\{w = 0\} \) (cf. Remark 2). Hoffman and Osserman classified complete simply-connected and doubly-connected minimal surfaces in \(\mathbb{R}^n \) with total curvature \(-4\pi\) including \(G_c \) [4]. They showed that

Received February 10, 2014; Revised May 24, 2014.
2010 Mathematics Subject Classification. 53A10, 53C12.
Key words and phrases. circle-foliated surface, minimal surface in \(S^4 \) and \(H^4 \).
This work was supported by Hankuk University of Foreign Studies Research Fund.
such minimal surfaces are foliated by ellipses or circles, and called them as the\textit{ skew catenoids}.

In this paper, we show that every circle-foliated minimal surface in \mathbb{R}^n is either a catenoid or a Riemann's minimal surface in a 3-dimensional Affine subspace or the graph surface G_c in a 4-dimensional Affine subspace. Therefore there is no counterpart of the Riemann's minimal surface in \mathbb{R}^n, for $n \geq 4$. We then use this property of G_c to construct circle-foliated minimal surfaces in S^4 and \mathbb{H}^4.

2. Circle-foliated minimal surfaces in \mathbb{R}^n

Let Σ be a circle-foliated surface in \mathbb{R}^n. Let $\{P_t\}$ be the one-parameter family of planes on which the circles of the foliation is on. Let \tilde{P}_t be the plane parallel to P_t and passes through the origin of \mathbb{R}^n. There is a one-parameter family of orthonormal basis of \mathbb{R}^n satisfying Frenet type equations \cite{3}.

\textbf{Theorem A.} Let $\{\tilde{P}_t\}$ be a smooth one-parameter family of planes in \mathbb{R}^n. There is a one-parameter family of orthonormal basis $e_1(t), e_2(t), \ldots, e_n(t)$ of \mathbb{R}^n such that $e_1(t)$ and $e_2(t)$ span \tilde{P}_t, and the following equations hold

\begin{align}
&\begin{align*}
&\dot{e}'_1 = \alpha'_1 e_j + \kappa'_1 e_{2+i} & (j, l = 1, 2) \\
&\dot{e}'_{2+i} = -\kappa'_1 e_i + \tau'_1 e_{2+i} + \gamma'_1 e_{4+\lambda} & (\lambda = 1, \ldots, n-4) \\
&\dot{e}'_{4+\xi} = -\gamma'_1 e_{2+i} + \beta'_1 e_{4+\lambda} & (\alpha'_1 = -\alpha'_j, \tau'_1 = -\tau'_i, \beta'_1 = -\beta'_\lambda),
\end{align*}
\end{align}

where $(\kappa^1)^2 \geq (\kappa^2)^2$, and \(t = \frac{4}{\kappa^1} \).

Using the above orthonormal basis of \mathbb{R}^n, we can parameterize a circle-foliated surface by

\begin{align}
X(t, \theta) = c(t) + r(t)(\cos \theta e_1 + \sin \theta e_2),
\end{align}

where $c(t)$ and $r(t)$ are the center and the radius of the circle on P_t.

\textbf{Theorem 1.} Circle-foliated minimal surface in \mathbb{R}^n is either i) a catenoid or a Riemann's minimal surface in 3-dimensional Affine subspace or ii) a graph surface G_c (defined in §1) in some 4-dimensional Affine subspace.

To prove the above theorem, we have to show that every circle-foliated minimal surface in \mathbb{R}^n, $n \geq 5$, actually lies in a (at most) 4-dimensional Affine subspace. First, let us assume that a circle-foliated surface X lies in \mathbb{R}^5. (The case of $n \geq 6$ is analogous to the case of \mathbb{R}^5.) For the simplicity of notations, we write (1) as

\begin{align}
\begin{pmatrix}
e_1 \\
e_2 \\
e_3 \\
e_4 \\
e_5
\end{pmatrix}' = \begin{pmatrix}0 & -\beta & -\kappa & 0 & 0 \\
\beta & 0 & 0 & \tau & 0 \\
\kappa & 0 & 0 & -\eta & -\nu \\
0 & -\tau & \eta & 0 & -\mu \\
0 & 0 & \nu & \mu & 0
\end{pmatrix} \begin{pmatrix}
e_1 \\
e_2 \\
e_3 \\
e_4 \\
e_5
\end{pmatrix}.
\end{align}
Let \(c'(t) = \sum_{i=1}^{5} \alpha_i e_i \), where \(\alpha_i \)'s are smooth functions. Then we have
\[
X_t = (\alpha_1 + r \cos \theta + r \beta \sin \theta)e_1 + (\alpha_2 + r \sin \theta - r \beta \cos \theta)e_2 \\
+ (\alpha_3 - r \kappa \cos \theta)e_3 + (\alpha_4 + r \tau \sin \theta)e_4 + \alpha_5 e_5,
\]
\[
X_\theta = -r \sin \theta e_1 + r \cos \theta e_2.
\]
Let \(N \) be a normal vector of \(X \) given by
\[
N = \cos \theta e_1 + \sin \theta e_2 + \gamma e_3 + \delta e_4 + \rho e_5.
\]
Then \(\gamma, \delta \) and \(\rho \) satisfy
\[
X_t \cdot N = \alpha_1 \cos \theta + \alpha_2 \sin \theta + r' + \gamma (\alpha_3 - r \kappa \cos \theta) \\
+ \delta(\alpha_4 + r \tau \sin \theta) + \rho \alpha_5 = 0.
\]
Let \(E, F, G \) be the coefficients of the first fundamental form of \(X \). Then
\[
E = |X_t|^2 = \sum_{i=1}^{5} \alpha_i^2 + r'^2 + r^2 \beta^2 + 2r' \alpha_1 \cos \theta + 2r' \alpha_2 \sin \theta \\
+ 2r \alpha_1 \beta \sin \theta - 2r \alpha_2 \beta \cos \theta - 2r \alpha_3 \kappa \cos \theta \\
+ r^2(\kappa^2 - \tau^2)(\cos \theta)^2 + 2r \alpha_4 \tau \sin \theta + r^2 \tau^2,
\]
\[
F = X_t \cdot X_\theta = -r \alpha_1 \sin \theta + r \alpha_2 \cos \theta - r^2 \beta,
\]
\[
G = |X_\theta|^2 = r^2.
\]

Lemma 1. The surface \(X(t, \theta) \) defined by (2) with \(\tau \neq 0 \) is minimal only if

i) \(\alpha_i = 0 \) for all \(i = 1, \ldots, 5 \), ii) \(\mu = \nu = 0 \) and iii) \(\kappa^2 = \tau^2 \), \(\beta \kappa = \tau \eta \) and \(\beta \tau = \kappa \tau \). Hence \(X(t, \theta) \) lies in a 4-dimensional Affine subspace.

Proof. Let \(l = X_t \cdot N, m = X_\theta \cdot N \) and \(n = X_{\theta \theta} \cdot N \), where \(N \) is given by (4).
Since \(X(t, \theta) \) is minimal, we must have
\[
\mathcal{H} := lG + nE - 2mF = 0.
\]
Direct computation shows that
\[
\mathcal{H} = \begin{cases}
\alpha_1 \cos \theta + r' + \alpha_2 \beta \cos \theta - \alpha_1 \beta \sin \theta + \alpha_2 \sin \theta - r \beta^2 \\
+ \alpha_3 \kappa \cos \theta - r \kappa(\cos \theta)^2 - \alpha_4 \tau - r \tau^2(\sin \theta)^2 \\
+ \gamma \left(\alpha_2 \kappa - 2r' \kappa \cos \theta - \alpha_1 \kappa - r \kappa' \cos \theta - r \beta \kappa \sin \theta + \alpha_3 \eta + r \tau \eta \sin \theta + \alpha_5 \nu \\
+ \alpha_4 + r \tau \tau \sin \theta + \alpha_2 \tau + r \tau' \sin \theta \\
+ \rho \left(\alpha_5 + r \kappa \nu \cos \theta - \alpha_3 \nu - \alpha_4 \mu - r \tau \mu \sin \theta \\
\sum_{i=1}^{5} \alpha_i^2 + r'^2 + r^2 \beta^2 + 2r' \alpha_1 \cos \theta + 2r' \alpha_2 \sin \theta \\
+ r^2(\kappa^2 - \tau^2)(\cos \theta)^2 + 2r \alpha_4 \tau \sin \theta + r^2 \tau^2 \\
- 2(r \beta + r \tau \kappa \sin \theta + r \tau \cos \theta)(-r \alpha_1 \sin \theta + r \alpha_2 \cos \theta - r^2 \beta) \end{cases}
\]
Since γ, δ and ρ satisfy (5), we first let $\gamma = -(\alpha_1 \cos \theta + \alpha_2 \sin \theta + r')/(\alpha_3 - r \kappa \cos \theta)$, $\delta = \rho = 0$ and $\mathcal{S} := \mathcal{H}(\alpha_3 - r \kappa \cos \theta)$. Then the coefficients of $\cos(3\theta)$ and $\sin(3\theta)$ of \mathcal{S} are $r^2 \kappa (r^2 (\kappa^2 - \tau^2) + \alpha_1^2 - \alpha_5^2)/2$ and $r^2 \kappa \alpha_1 \alpha_2$ respectively. Since these should be equal to zero and $\kappa^2 \geq \tau^2$, we necessarily have $\alpha_1 = 0$.

Let $\delta = -(\alpha_2 \sin \theta + r')/(\alpha_4 + r \tau \sin \theta)$, $\gamma = \rho = 0$ and $\mathcal{T} := \mathcal{H}(\alpha_4 + r \tau \cos \theta)$. The coefficients of $\cos(2\theta)$ of \mathcal{S} and $\sin(2\theta)$ of \mathcal{T} are $r^3 (-5 \alpha_3 \kappa^2 + 2 \alpha_3 \tau^2 + \alpha_2 \rho \nu)$ and $(3 \alpha_3 \kappa \tau - r^3 \alpha_2 \rho \nu)/2$ respectively, which are equal to zero. Hence we have either $\kappa^2 - \tau^2 = 0$ or $\alpha_3 = 0$. On the other hand, the coefficient of $\cos(3\theta)$ of \mathcal{T} is $-r^4 \tau (\kappa^2 - \tau^2)$, which implies that $\kappa^2 = \tau^2$. Then we have $\alpha_2 = 0$, and since we assumed that $\tau^2 > 0$, we also have $\alpha_3 = 0$. Substituting these into \mathcal{S}, we have $\alpha_4 = 0$ from the coefficient of $\sin(2\theta)$.

Suppose that $\alpha_5 \neq 0$, and let $\gamma = \delta = 0$ and $\rho = -r' / \alpha_5$. Then \mathcal{H} becomes

$$r^2 [r^2 \kappa - 2 r^2 (\cos \theta)^2 - 2 r^2 \tau (\sin \theta)^2 - \frac{r'}{\alpha_5} \rho (\kappa + \tau \rho \sin \theta)] - r (\alpha_5^2 + r' / \alpha_5^2).$$

Therefore we have $\kappa = \tau = 0$, which contradicts the assumption $\kappa, \tau \neq 0$. From (5), (6) and $\alpha_5 = 0$, it follows that $\mu = \nu = 0$. This completes the proofs of i) and ii).

From the coefficients of $\sin \theta$ of \mathcal{S} and $\cos \theta$ of \mathcal{T}, we have

(7) \quad $\beta \kappa = \tau \eta$

and

(8) \quad $\beta \tau = \kappa \eta$.

Since $\mu = \nu = 0$ and $\alpha_i = 0$ for all $i = 1, \ldots, 5$, the surface $X(t, \theta)$ lies in a 4-dimensional Affine subspace. \hfill \Box

Remark 1. When $n \geq 6$ and $X(t, \theta)$ is minimal, it is easy to see in the above proof that $\alpha_k = 0$ for $k \geq 5$ and $\gamma_5 = 0$ and $\beta \xi = 0$. Hence $X(t, \theta)$ should lie in a 4-dimensional Affine subspace.

Lemma 2. If the surface $X(t, \theta)$ defined by (2) is minimal with $\tau \equiv 0$, then the planes \bar{P} lie in some 3-dimensional Affine subspace.

Proof. When $\tau \equiv 0$, we consider two cases: $\alpha_4 \equiv 0$ or $\alpha_4 \neq 0$. First of all, we have $\alpha_1 = 0$ as in the proof of the above lemma. If $\tau \equiv 0$ and $\alpha_4 \neq 0$, then we let $\gamma = \rho = 0$ and $\delta = -(\alpha_3 \sin \theta + r') / \alpha_4$. The coefficient of $\cos(2\theta)$ of \mathcal{H} is $-2r^2 \kappa^2$. Since this must be 0, we have $\kappa \equiv 0$. Then η, ν and μ can be chosen to be zero, and \bar{p} are parallel planes in a 3-dimensional Affine subspace.

If $\alpha_4 \equiv 0$, then \mathcal{H} is independent of the choice of δ. Hence we have $\eta \equiv 0$ and $\alpha_5 \mu \equiv 0$. If $\alpha_5 \equiv 0$, then we should have $\nu \equiv 0$. From (3), e_4 and e_5 are independent of e_1, e_2, and e_3, and \bar{p} lie in a 3-dimensional Affine subspace. If $\alpha_5 \neq 0$, let $\gamma = \delta = 0$ and $\rho = -(\alpha_2 \sin \theta + r') / \alpha_5$. Then the coefficient of $\cos(2\theta)$ of $\alpha_3 \mathcal{H}$ is $-2r^2 \kappa$, which should be 0. Therefore e_1 and e_2 are independent of e_3, e_4, and e_5, and \bar{p} lie in a 3-dimensional Affine subspace. \hfill \Box
Lemma 3. The circle-foliated minimal surfaces in \mathbb{R}^4 of Lemma 1 is the graph G_c for some real c.

Proof. From (7), (8) and $\kappa^2 = \tau^2$, we see that $\beta^2 = \kappa^2 = \tau^2 = \eta^2$. Suppose that $\beta = \kappa$ and $\tau = \eta$ (the case $\beta = -\kappa$ and $\tau = -\eta$ can be dealt with in the same way). It follows that $(e_2 + e_3)' = 0$ and $(e_1 + e_4)' = 0$ (depending on the sign of κ/τ). We may suppose that $e_1 + e_4 = (0, 0, 0, \sqrt{2})$ and $e_2 + e_3 = (0, 0, \sqrt{2}, 0)$. Then we have

\[
\begin{align*}
e_1 &= \frac{1}{\sqrt{2}}(\cos \psi(t), \sin \psi(t), 0, 1), \\
e_2 &= \frac{1}{\sqrt{2}}(\cos \phi(t), \sin \phi(t), 1, 0), \\
e_3 &= \frac{1}{\sqrt{2}}(-\cos \phi(t), -\sin \phi(t), 1, 0), \\
e_4 &= \frac{1}{\sqrt{2}}(-\cos \psi(t), -\sin \psi(t), 0, 1).
\end{align*}
\]

From $e_1' = -\beta e_2 + \beta e_3$, we see that $2\beta = \pm \psi'$. If $\psi' = 2\beta$, then we have $\psi = \pi/2 + \phi$. Moreover $e_3' = -\beta e_1 + \tau e_4$ implies that $\beta = \eta$. Similarly, when $\psi' = -2\beta$, we have $\kappa = \eta$. Therefore we may assume that $\beta = \kappa = \tau = \eta = 1$. Then direct computation shows that

\[
H = r \left(rr'' - 3r'^2 - 2r^2 \right)
\]

for the normals of $X(t, \theta)$ corresponding to the cases i) $\gamma = -r'/r \cos \theta, \delta = 0$ and ii) $\gamma = 0, \delta = r'/r \sin \theta$. Hence r satisfies

\[
r r'' - 3r'^2 - 2r^2 = 0.
\]

The solution of (9) is $r = C_1 \cos(2t + C_2)\left(2t + C_2\right)^{-1/2}$, where C_1 and C_2 are constants.

We may let $C_1 = c$ and $C_2 = 0$ and $-\pi/4 < t < \pi/4$. Let A be the 4×4 orthogonal matrix given by

\[
A = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 0 & 0 & 1 \\ 0 & -1 & 1 & 0 \\ 0 & 1 & 1 & 0 \\ -1 & 0 & 0 & 1 \end{pmatrix}.
\]

Then $\tilde{X}(t, \theta) = A \circ X(t, \theta)$ represents the graph

\[
G_c = \left\{ \left(\zeta, \frac{c}{\zeta} \right) \mid \zeta \in \mathbb{C} - \{0\} \right\}.
\]

□

Remark 2. i) The parametrization of G_c is given by

\[
\tilde{X}(t, \theta) = \left(r \cos \theta, r \sin \theta, \frac{c}{r} \cos \theta, -\frac{c}{r} \sin \theta \right).
\]

Clearly, G_c has two ends that are asymptotic to the planes $\{(w, z) \mid w = 0\}$ and $\{(w, z) \mid z = 0\}$.
Let $g_r = (r \cos \theta, r \sin \theta, \frac{c}{r} \cos \theta, -\frac{c}{r} \sin \theta)$ be the circle on G_c for fixed r. The geodesic curvature of g_r is

\[\kappa_g = \frac{r|c^2 - r^4|}{(c^2 + r^4)^{3/2}}. \]

Hence we have

\[\int_{g_r} \kappa_g ds = 2\pi |c^2 - r^4|. \]

Since G_c is doubly-connected, Gauss-Bonnet theorem implies that

\[\int_{G_c} K dA = -\lim_{r \to 0} \int_{g_r} \kappa_g ds - \lim_{r \to \infty} \int_{g_r} \kappa_g ds = -4\pi. \]

3. Circle-foliated minimal surfaces in S^4 and H^4

To construct a circle-foliated minimal surface in S^4, we consider \mathbb{R}^4 with the conformal metric $ds_s^2 = ds_0^2/((1 + \langle x, x \rangle)/2)^2$, where ds_0^2 is the Euclidean metric of \mathbb{R}^4 and \langle , \rangle is the Euclidean inner product. Let H_s and H_0 be the mean curvatures of a surface M in \mathbb{R}^4 with respect to the metrics ds_s^2 and ds_0^2 respectively with respect to fixed Euclidean normal N satisfying (4). We have

\[H_s = \frac{1 + \langle x, x \rangle}{2|N|} H_0 + \left\langle x, \frac{N}{|N|} \right\rangle. \]

Similarly, to construct a circle-foliated minimal surfaces in H^4, we equip the conformal metric $ds_h^2 = ds_0^2/((1 - \langle x, x \rangle)/2)^2$ on the unit ball $B(O, 1)$ of \mathbb{R}^4. Then the mean curvature H_h of a surface M in $B(O, 1)$ with respect to ds_h^2 satisfies

\[H_h = \frac{1 - \langle x, x \rangle}{2|N|} H_0 - \left\langle x, \frac{N}{|N|} \right\rangle. \]

Examples of circle-foliated minimal surfaces in S^4 and H^4. Let e_1, e_2 be defined as in the proof of Theorem 3:

\[e_1 = \frac{1}{\sqrt{2}}(-\sin 2t, \cos 2t, 0, 1), \]

\[e_2 = \frac{1}{\sqrt{2}}(\cos 2t, \sin 2t, 1, 0). \]

The mean curvature of the circle-foliated surface

\[X(t, \theta) = r(t) (\cos \theta e_1 + \sin \theta e_2) \]

satisfies

\[H_0 |N| = \frac{r \left(r r'' - 3r'^2 - 2r^2 \right)}{2r^2 (r^2 + r'^2)}. \]
Hence as a surface in \mathbb{S}^4, $X(t, \theta)$ has mean curvature

$$H_s |N| = \frac{1 + r^2}{2} \cdot \frac{r (r r'' - 3r'^2 - 2r^2)}{2r^2 (r^2 + r'^2)} + r$$

for all normal direction. Therefore the circles centered at the origin on the planes spanned by $e_1(t), e_2(t)$ with radius function $r(t)$ satisfying

$$\frac{1 + r^2}{2} \cdot \frac{r r'' - 3r'^2 - 2r^2}{2r^2 (r^2 + r'^2)} + 1 = 0$$

(12)

define a circle-foliated minimal surface in \mathbb{S}^4.

Lemma 4. Solution of (12) with the initial conditions

$$r(0) = a^2 > 0 \text{ and } r'(0) = 0$$

is periodic.

Proof. Note that if $r(t)$ is a solution of (12), then $r(-t)$ is also a solution of (12). Hence each solution r of (12) is an even function. Moreover if $r'(t_1) = 0$, then $r(t_1 + t) = r(t_1 - t)$. Therefore it suffices to show that $r'(t_1) = 0$ for some $t_1 > 0$.

Suppose that r' does not vanish except for $t = 0$, therefore, $r'(t) > 0$ for all $t > 0$. From (12), we have

$$(13) \quad r'' = \frac{(3 - r^2) r'^2 + 2r^2 (1 - r^2)}{r (1 + r^2)}.$$

We may assume that $a < 1$. Then we have $r''(0) > 0$ and $r'(t) > 0$ for t close to 0. If r is not bounded, then $r'' \to -\infty$ as $t \to \infty$ by (13). Then $r' \to -\infty$, which contradicts $r'(t) > 0$ for all $t > 0$.

If r is bounded, then $r'' \to 0$ and $r' \to 0$ as $t \to \infty$. From (13) and the fact that $r'' \to 0$ as $t \to \infty$, it follows that $r \not\to 1$ as $t \to \infty$. From (13), we have $r''(t) > 0$ for all $t > 0$. On the other hand, since r is bounded and increasing, we should have $r''(t) < 0$ for sufficiently large t. Hence we conclude that $r'(t_1) = 0$ for some t_1 and r is periodic. □

To estimate the period of (13), we use the integrating factor to obtain a first integral

$$\frac{(1 + r^2)^4}{r^5} (r')^2 + \left(\frac{1}{r^4} + \frac{4}{r^3} + 4r^2 + r^4 \right) = C,$$

or

(14) \quad \left(r + \frac{1}{r} \right)^4 \left(\frac{r'}{r} \right)^2 + \left(r + \frac{1}{r} \right)^4 = C.
We suppose that \(r'(0) = 0 \) and the minimum value \(r_{\text{min}} \) is attained at \(t = 0 \), that is, \(r_{\text{min}} = r(0) \). Then

\[
C = \left(r_{\text{min}} + \frac{1}{r_{\text{min}}} \right)^4.
\]

Let \(r_{\text{max}} \) be the maximum value of \(r \) and \(r_{\text{max}} = r(t_{\text{max}}) \) so that the period of \(r \) is \(2t_{\text{max}} \). Then have

\[
r_{\text{min}} = \frac{1}{r_{\text{max}}}.
\]

Since \(r \) is strictly increasing on \((0, t_{\text{max}})\), we consider the inverse function \(t = t(r) \) of \(r(t) \). From (14), we have

\[
t'^2 = \frac{1}{r^2} \frac{(r^2 + 1)^4}{Cr^4 - (r^2 + 1)^4}.
\]

Then

\[
t_{\text{max}} = \int_{r_{\text{min}}}^{r_{\text{max}}} \frac{1}{r} \frac{(r^2 + 1)^2}{\sqrt{Cr^4 - (r^2 + 1)^4}} \, dr.
\]

Since \(1/r \) also satisfies (12), we have

\[
t_{\text{max}} = 2 \int_{r_{\text{min}}}^{1} \frac{1}{r} \frac{(r^2 + 1)^2}{\sqrt{Cr^4 - (r^2 + 1)^4}} \, dr.
\]

Substituting \(R = r^2 \), we get

\[
(15) \quad t_{\text{max}} = 2 \int_{r_{\text{min}}}^{1} \frac{1}{2R} \frac{(R + 1)^2}{\sqrt{CR^2 - (R + 1)^4}} \, dR.
\]

For convenience, we let \(c^2 = C \) with \(c \geq 4 \), \(p = \sqrt{(c + 4)/c} \) and \(k^2 = (c + 4)/(c - 4) \).

Substituting \(R = (\rho - p)/(\rho + p) \), we have

\[
dR = \frac{2p \, d\rho}{\sqrt{c(c - 4)(\rho^2 - 1)((\rho^2 - 1)\rho^2 - (c + 4))}} = \frac{2}{\sqrt{c(c - 4)}} \frac{d\rho}{\sqrt{(\rho^2 - 1)(\rho^2 - k^2)}}.
\]

Then (15) becomes

\[
t_{\text{max}} = \frac{8}{\sqrt{c(c - 4)}} \int_{\rho_0}^{\infty} \frac{\rho^2 \, d\rho}{(\rho^2 - p^2) \sqrt{(\rho^2 - 1)(\rho^2 - k^2)}},
\]

where \(\rho_0 = p(1 + r_{\text{min}}^2)/(1 - r_{\text{min}}^2) = k \).
Substituting $\tau = k/\rho$, we get
\begin{equation}
t_{\text{max}} = \frac{8}{\sqrt{c(c + 4)}} \int_0^1 \left(1 - \left(\frac{k}{\rho}\right)^2 \tau^2\right) \sqrt{(1 - \tau^2) \left(1 - \frac{\tau^2}{c}\right)} d\tau
= \frac{8}{\sqrt{c(c + 4)}} \Pi \left(\frac{c - 4}{c}, \frac{c - 4}{c + 4}\right),
\end{equation}
where $\Pi \left((c - 4)/c, (c - 4)/(c + 4)\right)$ is the complete elliptic integral of the third kind. For the following lemma, we introduce the elliptic integral of the 1st kind $F(\phi, \alpha)$ and the elliptic integral of the 2nd kind $E(\phi, \alpha)$:
\begin{align*}
F(\phi, \alpha) &= \int_0^\phi d\theta \sqrt{1 - \sin^2 \alpha \sin^2 \theta}, \\
E(\phi, \alpha) &= \int_0^\phi \sqrt{1 - \sin^2 \alpha \sin^2 \theta} d\theta.
\end{align*}
Moreover, $K(\alpha) = F(\pi/2, \alpha)$ and $E(\alpha) = E(\pi/2, \alpha)$ are the complete elliptic integrals of the first and second kinds respectively. Letting $k = \sin \alpha$, we also let $E(k) = E(\pi/2; k), K(k) = F(\pi/2; k)$.

Note that $c^2 = (r_{\text{min}} + 1/r_{\text{min}})^2$. If $c \to 4$ or $r_{\text{min}} \to 1$, then $t_{\text{max}} \to \pi/\sqrt{2}$.

In this case, we have $r \equiv 1$ and the resulting minimal surface is a torus.

Lemma 5. As a function of $c \geq 4$, t_{max} is decreasing and satisfies
\[\lim_{c \to \infty} t_{\text{max}} = \frac{\pi}{2}. \]
Hence the period of the solution of (12) is between π and $\sqrt{2}\pi$.

Proof. Straightforward computation shows that
\[\frac{d}{dc} \left(\frac{8}{\sqrt{c(c + 4)}} \Pi \left(\frac{c - 4}{c}, \frac{c - 4}{c + 4}\right) \right) = \frac{E \left(\frac{c - 4}{c + 4}\right) - K \left(\frac{c - 4}{c + 4}\right)}{2(c - 4)\sqrt{c(c + 4)}}. \]
Since
\[E \left(\frac{c - 4}{c + 4}\right) - K \left(\frac{c - 4}{c + 4}\right) < 0, \]
t$_{\text{max}}$ is a decreasing function of c.

Let $\alpha = \sin^{-1} \sqrt{(c - 4)/(c + 4)}$ with $0 < \alpha < \pi/2$ and let $\nu = (c - 4)/c$. According to [1], the integral $\Pi \left((c - 4)/c, \pi/2, (c - 4)/(c + 4)\right) = \Pi (\nu; \pi/2, \alpha)$ belongs to the circular case with $\sin^2 \alpha < \nu < 1$, and
\[\Pi (\nu; \pi/2, \alpha) = K(\alpha) + \frac{\pi}{2} \delta_2 (1 - \Lambda_0(\phi, \alpha)), \]
where Λ_0 is the Heuman’s Lambda function satisfying
\[\Lambda_0(\phi, \alpha) = \frac{2}{\pi} [K(\alpha) (E(\phi, \pi/2 - \alpha) - F(\phi, \pi/2 - \alpha)) + E(\alpha) F(\phi, \pi/2 - \alpha)]. \]
\[
\begin{align*}
\delta_2 &= \sqrt{\nu/(1 - \nu)(\nu - \sin^2 \alpha)} = \sqrt{c(c + 4)/4}, \\
\phi &= \sin^{-1}(1 - \nu)/(\cos^2 \alpha) = \sin^{-1}(c + 4)/2c.
\end{align*}
\]

Therefore \(\phi \to \pi/4 \) and \(\alpha \to \pi/2 \) as \(c \to \infty \).

Clearly,

\[
\lim_{c \to \infty} \left(E(\phi, \pi/2 - \alpha) - F(\phi, \pi/2 - \alpha) \right) = -\lim_{c \to \infty} \int_0^\phi \frac{\cos^2 \alpha \sin^2 \theta}{\sqrt{1 - \cos^2 \alpha \sin^2 \theta}} d\theta.
\]

We note that \(\cos \alpha = \sqrt{8/(c + 4)} \) and that \(\lim_{\alpha \to \pi/2} \cos K(\alpha) = 0 \) (cf. Lemma 8 of [5]). Then

\[
\lim_{c \to \infty} t_{\max} = \lim_{c \to \infty} \frac{8}{\sqrt{c(c + 4)}} \Pi(\nu; \pi/2, \alpha) = \frac{\pi}{2}.
\]

Theorem 2. The circle-foliated surface given by (11) with \(e_1, e_2 \) satisfying (10) and \(r \) satisfying (12) defines a one-parameter family of circle-foliated minimal surfaces in \(S^4 \). Moreover, the radius function \(r \) is periodic with the period between \(\pi \) and \(\sqrt{2\pi} \). Hence there are infinitely many circle-foliated immersed minimal tori in \(S^4 \).

In \(H^4 \), we let \(e_1, e_2 \) and \(X(t, \theta) \) be as in (10) and (11). Then the mean curvature of \(X(t, \theta) \) with respect to \(ds_h^2 \) satisfies

\[
H_h |N| = \frac{1 - r^2}{2} \cdot \frac{rr'' - 3r'^2 - 2r^2}{2r^2 (r^2 + r'^2)} - r
\]

with \(N \) satisfying (4). Hence if \(X(t, \theta) \) is minimal, then \(r \) satisfies

\[
\frac{1 - r^2}{2} \cdot \frac{rr'' - 3r'^2 - 2r^2}{2r^2 (r^2 + r'^2)} - 1 = 0.
\]

We note that \(r'' \) blows up as \(r \to 1 \), when \(X(t, \theta) \) approaches the ideal boundary of \(H^4 \). For each initial condition \(r(0) = b^2 < 1, r'(0) = 0 \) of (17), \(X(t, \theta) \) gives a complete circle-foliated minimal surface in \(H^4 \).

Theorem 3. The parametrization (11) with \(e_1, e_2 \) satisfying (10) and \(r \) satisfying (17) gives a one-parameter family of circle-foliated minimal surfaces in \(H^4 \).

References

MAJOR IN MATHEMATICS
GRADUATE SCHOOL OF EDUCATION
HANKUK UNIVERSITY OF FOREIGN STUDIES
SEOUL 130-791, KOREA
E-mail address: sungbopark@hufs.ac.kr