A REMARK ON UNIQUE CONTINUATION FOR THE CAUCHY-RIEMANN OPERATOR

IHYEOK SEO

Abstract. In this note we obtain a unique continuation result for the differential inequality $|\overline{\partial} u| \leq |Vu|$, where $\overline{\partial} = (i \partial_y + \partial_x)/2$ denotes the Cauchy-Riemann operator and $V(x, y)$ is a function in $L^2(\mathbb{R}^2)$.

1. Introduction

The unique continuation property is one of the most interesting properties of holomorphic functions $f \in H(\mathbb{C})$. This property says that if f vanishes in a non-empty open subset of \mathbb{C}, then it must be identically zero. Note that $u \in C^1(\mathbb{R}^2)$ satisfies the Cauchy-Riemann equation $(i \partial_y + \partial_x)u = 0$ if and only if it defines a holomorphic function $f(x + iy) \equiv u(x, y)$ on \mathbb{C}. From this point of view, one can see that a C^1 function satisfying the equation has the unique continuation property.

In this note we consider a class of non-holomorphic functions u which satisfy the differential inequality

$$ |\overline{\partial} u| \leq |Vu|, $$

(1.1)

where $\overline{\partial} = (i \partial_y + \partial_x)/2$ denotes the Cauchy-Riemann operator and $V(x, y)$ is a function on \mathbb{R}^2.

The best positive result for (1.1) is due to Wolff [9] (see Theorem 4 there) who proved the property for $V \in L^p$ with $p > 2$. On the other hand, there is a counterexample [8] to unique continuation for (1.1) with $V \in L^p$ for $p < 2$. The remaining case $p = 2$ seems to be unknown for the differential inequality (1.1), and note that L^2 is a scale-invariant space of V for the equation $\overline{\partial} u = Vu$. Here we shall handle this problem. Our unique continuation result is the following theorem which is based on bounds for a Fourier multiplier from L^p to L^q.

Theorem 1.1. Let $1 < p < 2 < q < \infty$ and $1/p - 1/q = 1/2$. Assume that $u \in L^p \cap L^q$ satisfies the inequality (1.1) with $V \in L^2$ and vanishes in a non-empty open subset of \mathbb{R}^2. Then it must be identically zero.

Received January 20, 2015.

2010 Mathematics Subject Classification. Primary 35B60, 35F05.

Key words and phrases. unique continuation, Cauchy-Riemann operator.
The unique continuation property also holds for harmonic functions, which satisfy the Laplace equation $\Delta u = 0$, since they are real parts of holomorphic functions. This was first extended by Carleman [1] to a class of non-harmonic functions satisfying the inequality $|\Delta u| \leq |Vu|$ with $V \in L^\infty(\mathbb{R}^2)$. There is an extensive literature on later developments in this subject. In particular, the problem of finding all the possible L^p functions V, for which $|\Delta u| \leq |Vu|$ has the unique continuation, is completely solved (see [3, 5, 7]). See also the survey papers of Kenig [4] and Wolff [10] for more details, and the recent paper of Kenig and Wang [6] for a stronger result which gives a quantitative form of the unique continuation.

Throughout the paper, the letter C stands for positive constants possibly different at each occurrence. Also, the notations \hat{f} and $F^{-1}(f)$ denote the Fourier and the inverse Fourier transforms of f, respectively.

2. A preliminary lemma

The standard method to study the unique continuation property is to obtain a suitable Carleman inequality for relevant differential operator. This method originated from Carleman’s classical work [1] for elliptic operators. In our case we need to obtain the following inequality for the Cauchy-Riemann operator $\overline{\partial} = (i\partial_y + \partial_x)/2$, which will be used in the next section for the proof of Theorem 1.1:

Lemma 2.1. Let $f \in C^\infty_0(\mathbb{R}^2 \setminus \{0\})$. For all $t > 0$, we have

\begin{equation}
\|z^{-t}f\|_{L^q} \leq C \|z^{-t}\overline{\partial} f\|_{L^p}
\end{equation}

if $1 < p < 2 < q < \infty$ and $1/p - 1/q = 1/2$. Here, $z = x + iy \in \mathbb{C}$ and C is a constant independent of t.

Proof. First we note that

$$\overline{\partial}(z^{-t}f) = z^{-t}\overline{\partial}f + f\overline{\partial}(z^{-t}) = z^{-t}\overline{\partial}f$$

for $z \in \mathbb{C} \setminus \{0\}$. Then the inequality (2.1) is equivalent to

$$\|z^{-t}f\|_{L^q} \leq C \|\overline{\partial}(z^{-t}f)\|_{L^p}.$$

By setting $g = z^{-t}f$, we are reduced to showing that

$$\|g\|_{L^q} \leq C \|(i\partial_y + \partial_x)g\|_{L^p}$$

for $g \in C^\infty_0(\mathbb{R}^2 \setminus \{0\})$. To show this, let us first set

\begin{equation}
(i\partial_y + \partial_x)g = h,
\end{equation}

and let $\psi_\delta : \mathbb{R}^2 \rightarrow [0, 1]$ be a smooth function such that $\psi_\delta = 0$ in the ball $B(0, \delta)$ and $\psi_\delta = 1$ in $\mathbb{R}^2 \setminus B(0, 2\delta)$. Then, using the Fourier transform in (2.2), we see that

$$(-\eta + i\xi)\hat{g}(\xi, \eta) = \hat{h}(\xi, \eta).$$
Thus, by Fatou’s lemma we are finally reduced to showing the following uniform boundedness for a multiplier operator having the multiplier $m(\xi, \eta) = \psi_\delta(\xi, \eta)/(-\eta + i\xi)$:

\begin{equation}
\left\| F^{-1}\left(\frac{\psi_\delta(\xi, \eta)\hat{h}(\xi, \eta)}{-\eta + i\xi} \right) \right\|_{L^q} \leq C\|h\|_{L^p}
\end{equation}

uniformly in $\delta > 0$.

From now on, we will show (2.3) using Young’s inequality for convolutions and Littlewood-Paley theorem ([2]). Let us first set for $k \in \mathbb{Z}$

\[
\hat{T}h(\xi, \eta) = m(\xi, \eta)\hat{h}(\xi, \eta) \quad \text{and} \quad \hat{T}_kh(\xi, \eta) = m(\xi, \eta)\chi_k(\xi, \eta)\hat{h}(\xi, \eta),
\]

where $\chi_k(\cdot) = \chi(2^k \cdot)$ for $\chi \in C_0^\infty(\mathbb{R}^2)$ which is such that $\chi(\xi, \eta) = 1$ if $|\langle \xi, \eta \rangle| \sim 1$, and zero otherwise. Also, $\sum_k \chi_k = 1$. Now we claim that

\begin{equation}
\|T_kh\|_{L^q} \leq C\|h\|_{L^p}
\end{equation}

uniformly in $k \in \mathbb{Z}$. Then, since $1 < p < 2 < q < \infty$, by the Littlewood-Paley theorem together with Minkowski’s inequality, we get the desired inequality (2.3) as follows:

\[
\| \sum_k T_kh \|_{L^q} \leq C\| (\sum_k |T_kh|^2)^{1/2} \|_{L^q} \\
\leq C(\sum_k \|T_kh\|_{L^q}^2)^{1/2} \\
\leq C(\sum_k \|h_k\|_{L^p}^2)^{1/2} \\
\leq C\| (\sum_k |h_k|^2)^{1/2} \|_{L^p} \\
\leq C\| \sum_k h_k \|_{L^p},
\]

where h_k is given by $\hat{h}_k(\xi, \eta) = \chi_k(\xi, \eta)\hat{h}(\xi, \eta)$. Now it remains to show the claim (2.4). But, this follows easily from Young’s inequality. Indeed, note that

\[
T_kh = F^{-1}\left(\frac{\psi_\delta(\xi, \eta)\chi_k(\xi, \eta)}{-\eta + i\xi} \right) \ast h
\]

and by Plancherel’s theorem

\[
\left\| F^{-1}\left(\frac{\psi_\delta(\xi, \eta)\chi_k(\xi, \eta)}{-\eta + i\xi} \right) \right\|_{L^2} = \left\| \frac{\psi_\delta(\xi, \eta)\chi_k(\xi, \eta)}{-\eta + i\xi} \right\|_{L^2} \\
\leq C\left(\int_{|\langle \xi, \eta \rangle| \sim 2^{-k}} \frac{1}{\eta^2 + \xi^2} \, d\eta \right)^{1/2} \\
\leq C.
\]
Since we are assuming the gap condition $1/p - 1/q = 1/2$, by Young’s inequality for convolutions, this readily implies that
\[
\|T_k h\|_{L^p} \leq \left\| \int_{\mathbb{R}^2} \frac{\psi_\delta(\xi, \eta) \chi_k(\xi, \eta)}{-\eta + i\xi} \right\|_{L^2} \|h\|_{L^p} \leq C\|h\|_{L^p}
\]
as desired.

3. Proof of Theorem 1.1

The proof is standard once one has the Carleman inequality (2.1) in Lemma 2.1.

Without loss of generality, we may show that u must vanish identically if it vanishes in a sufficiently small neighborhood of zero. Then, since we are assuming that $u \in L^p \cap L^q$ vanishes near zero, from (2.1) with a standard limiting argument involving a C^∞_0 approximate identity, it follows that
\[
\| |z|^{-t} u\|_{L^q(B(0,r))} \leq C\| |z|^{-t} \tilde{\mathcal{F}}u\|_{L^p(L^2 \setminus B(0,r))},
\]
where $B(0,r)$ is the ball of radius $r > 0$ centered at 0. Then, using Hölder’s inequality with $1/p - 1/q = 1/2$, the first term on the right-hand side in the above can be absorbed into the left-hand side as follows:
\[
C\| |z|^{-t} V u\|_{L^p(B(0,r))} \leq C\| V\|_{L^2(B(0,r))} \| |z|^{-t} u\|_{L^q(B(0,r))} \leq \frac{1}{2}\| |z|^{-t} u\|_{L^q(B(0,r))}
\]
if we choose r small enough. Here, $\| |z|^{-t} u\|_{L^q(B(0,r))}$ is finite since $u \in L^q$ vanishes near zero. Hence we get
\[
\| (r/|z|)^t u\|_{L^q(B(0,r))} \leq 2C\| \tilde{\mathcal{F}}u\|_{L^p(L^2 \setminus B(0,r))} \leq 2C\| V\|_{L^2} \| u\|_{L^q} < \infty.
\]
By letting $t \to \infty$, we now conclude that $u = 0$ on $B(0,r)$. This implies $u \equiv 0$ by a standard connectedness argument.

Acknowledgment. I would like to thank Jenn-Nan Wang for pointing out a preprint ([6]) and for some comments.

References

Department of Mathematics
Sungkyunkwan University
Suwon 440-746, Korea
E-mail address: ihseo@skku.edu