DOI QR코드

DOI QR Code

Asymmetric Directionality of Broadband Ship Radiation Noise at Bow-Stern Aspect

광대역 선박방사소음의 선수-선미 비대칭 방향성

  • 이근화 (세종대학교 국방시스템공학과) ;
  • 김민규 (서울대학교 조선해양공학과) ;
  • 성우제 (서울대학교 조선해양공학과)
  • Received : 2015.03.17
  • Accepted : 2015.07.31
  • Published : 2015.09.30

Abstract

In this paper, we perform a study on the directionality of broadband ship radiation noise, mainly resulting from propeller cavitation. By examining a few foreign studies for ship radiation noise and domestic data measured in Korean waters, it is reconfirmed that the asymmetric directionality of the ship radiation noise at bow and stern aspect is observed commonly. In order to explore the reason of this asymmetric directionality, a numerical analysis, based on the acoustic boundary element method, is applied into the geometric form equal to the commercial ship used in the domestic experiment. The numerical result demonstrates that the diffraction of the propeller cavitation noise by ship is a primary cause of the bow-stern asymmetry in the directionality of ship radiation noise.

본 논문에서는 프로펠러 공동에 의해 발생하는 광대역 선박방사소음의 방향성에 대한 연구를 수행했다. 국외 및 한국 근해에서 측정된 선박방사소음 자료의 조사를 통해 국내외 실험 자료에서 공통적으로 수중방사소음의 선수-선미 비대칭 방향성이 관찰되는 것을 재확인했다. 이 비대칭의 원인을 찾기 위해, 국내의 수중방사소음 측정에 사용된 상선과 동일한 형상에 대해 경계요소법을 이용한 수치해석을 적용했다. 수치해석 결과는 선박에 의한 소음의 회절효과가 선박방사소음에서 선수-선미의 비대칭 방향성이 나타나는 주된 원인이라는 것을 강하게 시사한다.

Keywords

References

  1. R. J. Urick, Principles of Underwater Sound (McGraw-Hill, New York, 1975), pp.328-376.
  2. D. Ross, Mechanics of Underwater Noise (Peninsula, Los Altos, 1987), pp.253-287.
  3. D. Ross, "Trends in merchant shipping (1969-1980)," Tetra Tech, Inc. Rep., 1975.
  4. M. F. McKenna, D. Ross, S. M. Wiggins, and J. A. Hildebrand, "Underwater radiated noise from modern commercial ships," J. Acoust. Soc. Am. 131, 92-103 (2012). https://doi.org/10.1121/1.3664100
  5. D. Ross, "Ship sources of ambient noise," IEEE J. of Oceanic Eng. 32, 257-261 (2005).
  6. A. N. Popper, J. Fewtrell, E. Michael, and R. D. Robert, "Anthropogenic sound: effects on the behavior and physiology of fishes," Marine Tech. Soc. J. 37, 35-40 (2003).
  7. P. T. Arveson and D. J. Vendittis, "Radiated noise characteristics of a modern cargo ship," J. Acoust. Soc. Am. 107, 118-129 (2000). https://doi.org/10.1121/1.428344
  8. M. V. Trevorrow, B. Vasiliev, and S. Vagle, "Directionality and maneuvering effects on a surface ship underwater acoustic signature," J. Acoust. Soc. Am. 124, 767-778 (2008). https://doi.org/10.1121/1.2939128
  9. J. K. Allen, M. L. Peterson, G. V. Sharrard, D. L. Wright, and S. K. Todd, "Radiated noise from commercial ships in the Gulf of Maine: Implications for whale/vessel collisions," J. Acoust. Soc. Am. 132, EL229-EL235 (2012). https://doi.org/10.1121/1.4739251
  10. K. Kim, K. Lee, W. Seong, S. Kim, and Y. Kim, "Geoacoustic inversion and source localization with an L-shaped receiver array" (in Korean), J. Acoust. Soc. Kr. 25, 346-355 (2006).
  11. T. Sasajima, N. Nakamura, and A. Oshima, "Model and full scale measurements of propeller cavitation noise on an oceanographic research ship with two different types of screw propeller," in Proc. ISSA' 86, 63-74 (1986).
  12. B. Kim, S. Han, J. Kim, B. Choi, B. Kim, and C. Park, "Measurement of underwater radiated noise from a ship using self-recording hydrophones" (in Korean), J. Acoust. Soc. Kr. Suppl.2(s) 33, 41 (2014).
  13. Y. Jung, K. Lee, W. Seong, and H. Kim, "Development of range-dependent ray model for sonar simulator" (in Korean), J. Acoust. Soc. Kr. 33, 163-173 (2014). https://doi.org/10.7776/ASK.2014.33.3.163
  14. B. Kim, S. Han. J. Kim, B. Choi, B. Kim, and C. Park, "Measurement of underwater radiated noise from a ship using self-recording hydrophones" (in Korean), J. Acoust. Soc. Kr. Suppl.2(s) 33, 41-41 (2014).