ON THE ANTICYCLOTOMIC \mathbb{Z}_p -EXTENSION OF AN IMAGINARY QUADRATIC FIELD

JANGHEON OH

ABSTRACT. We prove that if a subfield of the Hilbert class field of an imaginary quadratic field k meets the anticyclotomic \mathbb{Z}_p -extension k^a_{∞} of k, then it is contained in k^a_{∞} . And we give an example of an imaginary quadratic field k with $\lambda_3(k^a_{\infty}) \geq 8$.

1. Introduction

An abelian extension L of k is called an anti-cyclotomic extension of k if it is Galois over \mathbb{Q} , and $Gal(k/\mathbb{Q})$ acts on Gal(L/k) by -1. For each prime number p, the compositum K of all \mathbb{Z}_p -extensions over k becomes a \mathbb{Z}_p^2 -extension, and K is the compositum of the cyclotomic \mathbb{Z}_p -extension k_{∞}^c and the anti-cyclotomic \mathbb{Z}_p -extension k_{∞}^a of k.

The layers k_n^c of the cyclotomic \mathbb{Z}_p -extension are well understood. Since the Hilbert class field of k is an anti-cyclotomic extension of k, determination of the first layer of the anti-cyclotomic \mathbb{Z}_p -extension becomes complicated as the p-rank of the p-Hilbert class field of k becomes larger. In the papers [3,5,6], using Kummer theory and class field theory, we constructed the first layer k_1^a of the anti-cyclotomic \mathbb{Z}_3 -extension of k under the assumption that the 3-part of Hilbert class field H_k of k is 3-elementary. A criterion on linearly disjointness of k_1^a and H_k over k is

Received April 9, 2015. Revised July 7, 2015. Accepted July 8, 2015. 2010 Mathematics Subject Classification: 11R23.

Key words and phrases: Iwasawa theory, anticylotomic extension, Hilbert class field.

[©] The Kangwon-Kyungki Mathematical Society, 2015.

This is an Open Access article distributed under the terms of the Creative commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0/) which permits unrestricted non-commercial use, distribution and reproduction in any medium, provided the original work is properly cited.

proved in [4] under the assumption. In this paper, we prove the criterion without the assumption. See Corollary 1 of this paper.

Contrary to the case of the cyclotomic \mathbb{Z}_p -extension, the lambda invariant $\lambda_p(k_\infty^a)$ of the anticyclotomic \mathbb{Z}_p -extension of an imaginary quadratic field is not well known. Few examples of computation of $\lambda_p(k_\infty^a)$ are given. Following the idea of Fujii [1], we give an example of k with $\lambda_3(k_\infty^a) \geq 8$.

2. Proof of Theorems

Let p be an odd prime number. Throughout this section, we denote by H_k , h_k , A_k , and M_k the p-part of Hilbert class field, the p-class number, p-part of ideal class group, and the maximal abelian p-extension of an imaginary quadratic field k unramified outside above p, respectively. The first layer of the anti-cyclotomic \mathbb{Z}_p -extension of k may be or may not be contained in the p-Hilbert class field of k. The following theorem and the criterion in [4] gives an answer for this question. We define rank \mathbb{Z}/pA to be the dimension of A/A^p over $\mathbb{Z}/p\mathbb{Z}$ for any abelian group A. Note that $K \cap H_k = k_\infty^a \cap H_k$.

THEOREM 1. Let $d \not\equiv 3 \mod 9$ be a square free positive integer, $k = \mathbb{Q}(\sqrt{-d})$ an imaginary quadratic field. Let L be a subfield of H_k which satisfies the following properties:

$$H_k \cap k_\infty^a = k_n^a \le L(n \ge 1), \quad Gal(L/k)$$
 is cyclic.

Then

$$L = k_n^a$$
.

Proof. Assume that $k_n^a \neq L$. Then there exists a ramified extension of k of degree p which becomes unramifed over k_{∞}^a . By class field theory, we see that

$$Gal(M_k/H_k) \simeq (\prod_{\mathfrak{p}|p} U_{1,\mathfrak{p}}),$$

where $U_{1,\mathfrak{p}}$ is the local units of k which is congruent to $1 \mod \mathfrak{p}$. However, by the condition of Theorem 1, there is no p-torsion point in $\prod_{\mathfrak{p}|p} U_{1,\mathfrak{p}}$, which contradicts to the fact that the ramified extension of k of degree p exists. This completes the proof.

By Theorem 1 one can easily prove the following corollary, which was proved in [4] with the assumption that $A_{\mathbb{Q}(\sqrt{-d})}$ is 3-elementary, without the assumption. In fact, the following equivalence

$$H_k \cap k_{\infty}^a = k \iff rank_{\mathbb{Z}/p}X_{k,\chi} = 1 + rank_{\mathbb{Z}/p}A_k$$

in [4] holds without the assumption by Theorem 1. Here

$$X_k := Gal(M_k/k)/pGal(M_k/k)$$

and $X_{k,\chi}$ be the χ -component of X_k for the nontrivial character χ of $Gal(k/\mathbb{Q})$.

COROLLARY 1. Let $d \not\equiv 3 \mod 9$ be a square free positive integer, $k = \mathbb{Q}(\sqrt{-d})$ an imaginary quadratic field and k^a_{∞} the anti-cyclotomic \mathbb{Z}_3 -extension over k. Then

$$H_k \cap k_\infty^a = k \iff$$

$$\operatorname{rank}_{\mathbb{Z}/3} A_{\mathbb{Q}(\sqrt{3d})} = \operatorname{rank}_{\mathbb{Z}/3} A_{\mathbb{Q}(\sqrt{-d})}.$$

By following the idea of Fujii [1], we give an example of an imaginary quadratic field with large invariant $\lambda_3(k_\infty^a)$.

Theorem 2.

$$\lambda_3(k_\infty^a) \geq 8$$
,

where $k = \mathbb{Q}(\sqrt{-1423})$,

Proof. Denote by K_2^a the compositum of all \mathbb{Z}_3 -extensions of k_2^a . First note that the class number of $\mathbb{Q}(\sqrt{3*1423})$ is one. Hence, by Theorem 3 below, $H_k \subset k_\infty^a$. Since the class number of k is 9, $H_k = k_2^a$. By simple computation, we see that 3 stays prime in k. The definition of anticyclotomic extension and class field theory shows that \mathfrak{p}_3 , the prime of k above 3, splits completely in k_2^a . Note that the \mathbb{Z}_3 -rank of $Gal(K_2^a/k_2^a)$ is 10. Since the inertia group of primes of k_2^a above 3 is isomorphic to \mathbb{Z}_3^a and K/k is abelian, the extension of k_2^a contains K_2^a , and the galois group of K_2^a over K is isomorphic to \mathbb{Z}_3^8 . This completes the proof. \square

The following theorem is given in [2].

THEOREM 3. If p = 3 and $d \not\equiv 3 \mod 9$, then $H_k \subset k_{\infty}^a$ if and only if the class number of $\mathbb{Q}(\sqrt{3d})$ is not divisible by 3.

References

- [1] S.Fujii, On a bound of λ and the vanishing of μ of \mathbb{Z}_p -extensions of an imaginary quadratic field, J.Math.Soc.Japan. **65** (1) (2013), 277–298.
- [2] J.Minardi, Iwasawa modules for \mathbb{Z}_p^d -extensions of algebraic number fields, Ph.D dissertation, University of Washington, 1986.
- [3] J.Oh, On the first layer of anti-cyclotomic \mathbb{Z}_p -extension over imaginary quadratic fields, Proc. Japan Acad. Ser.A Math.Sci. 83 (3) (2007), 19–20.
- [4] J.Oh, A note on the first layers of \mathbb{Z}_p -extensions, Commun. Korean Math. Soc. **24** (3) (2009), 1–4.
- [5] J.Oh, Construction of 3-Hilbert class field of certain imaginary quadratic fields, Proc. Japan Aca. Ser.A Math. Sci. 86 (1) (2010), 18–19.
- [6] J.Oh, Anti-cyclotomic extension and Hilbert class field, Journal of the Chungcheong Math. Society 25 (1) (2012), 91–95.

Jangheon Oh
Faculty of Mathematics and Statistics
Sejong University
Seoul 143-747, Korea
E-mail: oh@sejong.ac.kr