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ON MARTINGALE PROPERTY OF THE STOCHASTIC

INTEGRAL EQUATIONS

Weonbae Kim

Abstract. A martingale is a mathematical model for a fair wa-
ger and the modern theory of martingales plays a very important
and useful role in the study of the stochastic fields. This paper is
devoted to investigate a martingale and a non-martingale on the sev-
eral stochastic integral or differential equations. Specially, we show
that whether the stochastic integral equation involving a standard
Wiener process with the associated filtration is or not a martingale.

1. Introduction

A differential equation in which one or more of the terms has a random
component is called a stochastic differential equation. The stochastic dif-
ferential equations are frequently used to model diverse applied fields.
Generally speaking, the stochastic differential equations have continu-
ous paths with both random and non-random components and to drive
the random component of the model they usually incorporate a Wiener
process. Before we discuss the models in depth, we first look at the
definition and example of a Wiener process.

Definition 1.1. Let (Ω,F , P ) be a probability measure space. Then
a stochastic process {Wt : t > 0} is called a standard Wiener process
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if W0 = 0 and {Wt : t > 0} has continuous sample paths, a stationary
increment and an independent increment.

A standard Wiener process is a standardized version of a Wiener
process, which need not begin at W0 = 0 and may have a non-zero
drift term and a variance term not necessarily equal to t. The general
definition of Wiener process is as follows.

Definition 1.2. A process {W̃t : t > 0} is called a Wiener process if

{W̃t : t > 0} can be written as

W̃t = ξ + µt+ σWt

where ξ, µ, σ ∈ R, (σ > 0) and Wt is a standard Wiener process.

The Wiener process in fact is a stochastic process sharing the similar
behaviour as Brownian motion([1],[6]). The Wiener process has a strong
Markov property, which is an important result in establishing many other
properties of Wiener processes such as martingales([7],[8],[10]). In gen-
eral, the strong Markov property implies the Markov property but not
vice versa([3],[4]). Once we have established the Markov property, we
can use them to show that a Wiener process is a martingale. The fol-
lowing example shows this process. Consider the following symmetric
random walk model

Mk =
k∑
i=1

Zi starting M0 ,

where P (Zi = −1) = 1
2
, P (Zi = 1) = 1

2
on a probability measure space

(Ω,F , P ). Using the independent increment property, E(Mk −Mj) = 0
for j < k, (j, k ∈ Z+),

E(Mk|Fj) = E(Mk −Mj +Mj |Fj)
= E(Mk −Mj |Fj) + E(Mj |Fj)
= E(Mk −Mj) +Mj

= Mj

and

|Mk| =

∣∣∣∣∣
k∑
i=1

Zi

∣∣∣∣∣ 6
k∑
i=1

|Zi| = k < +∞ .
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Moreover, Mk is clearly Fk-adapted, it follows that Mk is a martingale.
By the Donsker’s theorem([8]), if

W
(n)
t =

1√
n
M[nt] =

1√
n

[nt]∑
i=1

Zi

is a symmetric random walk for a fixed time t, then we obtain the Wiener
process where

lim
n→∞

W
(n)
t = lim

n→∞

1√
n

[nt]∑
i=1

Zi
d−→ N(0, 1) .

This example shows that the symmetric random walk satisfies the mar-
tingale property as a Wiener process and then the limiting distribution
of the symmetric random walk is a standard normal distribution N(0, 1),
and also is giving explain the sequence of all process referred to in this
paper.

As already stated in the abstract, this paper deals with martingale
property of some Wiener process. The tool of the proof is the qua-
dratic variation method and if the case can not use a quadratic variation,
then we prove the martingale property using the stochastic integration
method. In general, the quadratic variation of any stochastic process is
not a easy thing to prove whether that satisfies the martingale property.
Finally, we introduce an example using the results of theorem.

2. Martingale Property

Let (Ω,F , P ) be a probability measure space and {Wt : t > 0} be a
standard Wiener process. Then the following terms such as

Wt, W
2
t − t, exp

(
λWt −

1

2
λ2t
)

(λ ∈ R)

satisfy the martingale property([2],[6]). Using this results, we obtain the
martingale property for the hyperbolic processes in the next theorem.

Theorem 2.1. Let (Ω,F , P ) be a probability measure space and
let {Wt : t > 0} be a standard Wiener process. Then the hyperbolic
processes

Xt = exp
(
−1

2
λ2t
)

cosh(λWt), Yt = exp
(
−1

2
λ2t
)

sinh(λWt), (λ ∈ R)
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are a martingale, respectively.

Proof. We prove only the first formula. Then Xt can be expresses as

Xt = exp
(
−1

2
λ2t
)

cosh(λWt)

=
1

2
exp
(
λWt −

1

2
λ2t
)

+
1

2
exp
(
−λWt −

1

2
λ2t
)
, (λ ∈ R)

= At +Bt

Since At and Bt are martingales, we have E(At + Bt|Fs) = As + Bs for
s < t and also E(|At + Bt|) < +∞. And since Xt is a function of Wt,
Xt is Ft-adapted. As a result, Xt is a margingale.

An one-dimensional stochastic differential equation can be described
as

dXt = µ(Xt, t) dt+ σ(Xt, t) dWt

where Wt is a standard Wiener process, µ(Xt, t) is the drift term and
σ(Xt, t) is the volatility term([5]). From the initial condition X0 = x0,
it can be written as the form of

Xt = X0 +

∫ t

0

µ(Xs, s) ds+

∫ t

0

σ(Xs, s) dWs ,

where ∫ t

0

(|µ(Xs, s) |+ |σ(Xs, s) |2) ds < +∞

and the solution of the stochastic integral equation is called an Itô’s dif-
fusion([5]). We consider the stochastic integral with respect to a Wiener
process and write

It =

∫ t

0

f(Ws, s) dWs

where the integrand f(Wt, t) is Ft-measurable and

E
(∫ t

0

|f(Ws, s)|2 ds
)
< +∞ for all t > 0.

Let t > 0 be any constant. Suppose that f(Wti , ti) is a constant on
the subinterval [ti, ti+1), where ti = t

n
i, 0 = t0 < t1 < t2 < · · · < tn = t

for n ∈ N. Then we call such a process f a simple process. For a simple
process, the stochastic integral It can be defined as

It =

∫ t

0

f(Ws, s) dWs = lim
n→∞

n−1∑
i=0

f(Wti , ti)(Wti+1
−Wti) .
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Now we prove a martingale case and a non-martingale case on the
several stochastic integral equations involing the Wiener process. One
of the most useful property of a Wiener process is the quadratic variation.
First, we give a related lemma that we need in the sequal.

Lemma 2.1. Let (Ω,F , P ) be a probability measure space and let
{Wt : t > 0} be a standard Wiener process. Then the finite quadratic
variation of {Wt : t > 0} is given by

〈W,W 〉t = lim
n→∞

n−1∑
i=0

(
Wti+1

−Wti

)2
= t ,

where ti = t
n
i, 0 = t0 < t1 < t2 < · · · < tn−1 < tn = t for n ∈ N.

Proof. Since the quadratic variation is a sum of random variables, we
need to show that its expected value is t and its variance converges to
zero as n→∞. Let

∆Wti = Wti+1
−Wti ∼ N(0,

t

n
) ,

where E(∆W 2
ti

) = t
n
, we have

E

(
lim
n→∞

n−1∑
i=0

∆W 2
ti

)
= lim

n→∞

∞∑
i=0

E(∆W 2
ti

) = t .

Because ∆W 2
ti
/(t/n) ∼ χ2(1), we have E(∆W 4

ti
) = 3t2

n2 , it follows that

Var

(
lim
n→∞

n−1∑
i=0

∆W 2
ti

)
= E

{(
lim
n→∞

n−1∑
i=0

∆W 2
ti
− t
)2}

= lim
n→∞

n−1∑
i=0

E
{(

∆W 2
ti
− t

n

)2}
= lim

n→∞

n−1∑
i=0

(
3
t2

n2
− 2

t2

n2
+
t2

n2

)
= 0 .

Therefore

lim
n→∞

n−1∑
i=0

(
Wti+1

−Wti

)2
=

∫ t

0

dWs dWs = t

holds.
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Using the result of Lemma 2.1, Theorem 2.2 satisfies the martigale
property.

Theorem 2.2. Let (Ω,F , P ) be a probability measure space and let
{Wt : t > 0} be a standard Wiener process. Then

It =

∫ t

0

Ws dWs = lim
n→∞

n−1∑
i=0

Wti(Wti+1
−Wti) ,

where ti = t
n
i, 0 = t0 < t1 < t2 < · · · < tn−1 < tn = t for n ∈ N, is a

martingale.

Proof. Since the quadratic variation of Wt is

〈W,W 〉t = lim
n→∞

n−1∑
i=0

(
Wti+1

−Wti

)2
= t

and

It = lim
n→∞

n−1∑
i=0

Wti(Wti+1
−Wti)

= lim
n→∞

n−1∑
i=0

[1

2
(W 2

ti+1
−W 2

ti
)− 1

2
(Wti+1

−Wti)
2
]

=
1

2
(W 2

t − t) .

Therefore It is a martingale.

Remark. Another proof of Theorem 2.2 is as follow.

dXt =
∂Xt

∂t
dt+

∂Xt

∂Wt

dWt +
1

2

∂2Xt

∂W 2
t

dW 2
t + · · ·

= Wt dWt +
1

2
dt .

Taking integrals, ∫ t

0

dXs =

∫ t

0

Ws dWs +
1

2

∫ t

0

ds

we obtain ∫ t

0

Ws dWs =
1

2
(W 2

t − t) .

Next theorem is not a martingale case.
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Theorem 2.3. Let (Ω,F , P ) be a probability measure space and let
{Wt : t > 0} be a standard Wiener process with the associated filtration
Ft. Then the quadratic variation of Wt is defined by

〈W,W 〉t = lim
n→∞

n−1∑
i=0

(
Wti+1

−Wti

)2
= t

and the stochastic integral of Wt ∗ dWt

Jt =

∫ t

0

Ws ∗ dWs = lim
n→∞

n−1∑
i=0

Wti(Wti+1
−Wti) ,

where ti = t
n
i, 0 = t0 < t1 < t2 < · · · < tn−1 < tn = t for n ∈ N, is not a

martingale.

Proof. By Lemma 2.1, the quadratic variation of Wt is

〈W,W 〉t = lim
n→∞

n−1∑
i=0

(
Wti+1

−Wti

)2
= t ,

we have

Jt = lim
n→∞

n−1∑
i=0

Wti+1
(Wti+1

−Wti)

= lim
n→∞

n−1∑
i=0

[1
2

(W 2
ti+1
−W 2

ti
) +

1

2
(Wti+1

−Wti)
2
]

=
1

2
(W 2

t + t) .

Under the filtration Fu (u < t),

E(Jt | Fu) =
1

2
E
(
W 2
t + t | Fu

)
=

1

2
E
(
W 2
t | Fu

)
+

1

2
t

=
1

2
(W 2

u − u) .

Hence Jt is not a martingale.

The next theorem shows the martingale property as using the inte-
grand of the stochastic integral is a simple function but the quadratic
variation method is not.
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Theorem 2.4. Let (Ω,F , P ) be a probability measure space and
let {Wt : t > 0} be a standard Wiener process with the associated
filtration Ft. The stochastic integral It with respect to the standard
Wiener process defined by

It =

∫ t

0

f(Ws, s) dWs = lim
n→∞

n−1∑
i=0

f(Wti , ti)(Wti+1
−Wti) ,

where f is a simple function and |f(Wti , ti)| < +∞, ti = t
n
i, 0 = t0 <

t1 < t2 < · · · < tn−1 < tn = t for n ∈ N, is a martingale.

Proof. Since It is a function of Wt, it is Ft-adapted. Under the filtra-
tion Fu (u < t), we have

It =

∫ t

0

f(Ws, s) dWs

=

∫ u

0

f(Ws, s) dWs +

∫ t

u

f(Ws, s) dWs

= lim
n→∞

k−1∑
i=0

f(Wti , ti)(Wti+1
−Wti)

+ lim
n→∞

n−1∑
i=k

f(Wti , ti)(Wti+1
−Wti) ,

where k < n− 1 and

E
(∫ u

0

f(Ws, s) dWs

∣∣∣Fu) =

∫ u

0

f(Ws, s) dWs .

Furthermore, we have

E(It|Fu) = E
[

lim
n→∞

k−1∑
i=0

f(Wti , ti)(Wti+1
−Wti)

∣∣Fu]
+E

[
lim
n→∞

n−1∑
i=k

f(Wti , ti)(Wti+1
−Wti)

∣∣Fu]
=

∫ u

0

f(Ws, s) dWs + lim
n→∞

n−1∑
i=k

E
[
f(Wti , ti)(Wti+1

−Wti)
∣∣Fu]
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Hence it follows that

E(It|Fu) =

∫ u

0

f(Ws, s) dWs

+ lim
n→∞

n−1∑
i=k

E
[
E
[
f(Wti , ti)(Wti+1

−Wti)
∣∣Fti]∣∣∣Fu]

=

∫ u

0

f(Ws, s) dWs + lim
n→∞

n−1∑
i=k

E
[
f(Wti , ti)(Wti −Wti)

∣∣Fu]
=

∫ u

0

f(Ws, s) dWs = Iu .

Finally, since

| It | 6 lim
n→∞

n−1∑
i=0

∣∣f(Wti , ti)(Wti+1
−Wti)

∣∣
6 lim

n→∞

{(
max

06m6n−1
|Wtm+1 −Wtm|

) n−1∑
i=0

|f(Wti , ti)|
}
,

we have E(|It|) < +∞. Therefore It is a martingale.

As a result, if we use the martingale property of the quadratic vari-
ation in Theorem 2.2 or the stochastic integration in Theorem 2.4,
then it follows that the limiting distribution of a standard Wiener process
or a standard Wiener process with the associated filtration Ft, (t > 0)
is a standard normal distribution N(0, 1).

Example. Let (Ω,F , P ) be a probability space and let {Mt : t > 0}
be a martingale with respect to the filtration Ft, (t > 0), where M0 = 0,
Mt has continuous sample paths whose quadratic variation

lim
n→∞

n−1∑
i=0

(
Mti+1

−Mti

)2
= t ,

where ti = t
n
i, 0 = t0 < t1 < t2 < · · · < tn−1 < tn = t for n ∈ N.

Then Mt is a standard Wiener process and the limiting distribution of
Mt is a standard normal distribution N(0, 1). We first show that Mt is
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a standard Wiener process. Since Mt is a martingale, fot s < t

E(Mt | Fs) = E(Mt −Ms | Fs) + E(Ms | Fs)
= E(Mt −Ms | Fs) +Ms

= Ms

and for t > 0 and s > 0, we have

E(Mt+s −Mt) = E(Mt+s)− E(Mt) = 0

and

Var(Mt+s −Mt) = Var(Mt+s) + Var(Mt)− 2Cov(Mt+s,Mt)

= 2t+ s− 2E(Mt)E(Mt+s −Mt)− 2E(M2
t )

= s .

Hence Mt+s−Mt ∼ N(0, s). Because M0 = 0 and also Mt has continuous
sample paths with independent and stationary increments, so Mt is a
standard Wiener process. Next, let f(Mt, t) = eλMt− 1

2
λt for any constant

λ. Since dMt dMt = dt and (dt)n = 0 for n > 2, we have

df(Mt, t) =
∂f

∂t
dt+

∂f

∂dMt

dMt +
1

2

∂2f

∂M2
t

(dMt)
2 + · · ·

=
(∂f
∂t

+
1

2

∂2f

∂M2
t

)
dt+

∂f

∂Mt

dMt

= λf(Mt, t) dMt .

Taking integrals from 0 to t,∫ t

0

df(Ms, s) = λ

∫ t

0

f(Ms, s) dMs

f(Mt, t)− f(M0, 0) = λ

∫ t

0

f(Ms, s) dMs

and then taking expectations, we have

E
(
f(Mt, t)

)
= 1 + λE

(∫ t

0

f(Ms, s) dMs

)
.
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By definition of the stochastic integral and since Mt is a martingale, it
follows that

E
(∫ t

0

f(Ms, s) dMs

)
= lim

n→∞

n−1∑
i=0

E
{
f(Mti , ti)(Mti+1

−Mti)
}

= lim
n→∞

n−1∑
i=0

E
[
E
{
f(Mti , ti)(Mti+1

−Mti)|Fti
}]

= lim
n→∞

n−1∑
i=0

E
{
f(Mti , ti)(Mti −Mti)

}
= 0 .

Hence

E
(
f(Mt, t)

)
= 0 or E(eλMt) = e

1
2
λ2t ,

which is a moment generating function for the normal distribution with
mean zero and variance t. Therefore, the limiting distribution of Mt is
a standard normal distribution N(0, 1).
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