DOI QR코드

DOI QR Code

Effects of Fuel Composition on Flame Transfer Function in Lean Premixed Combustor

희박 예혼합 연소기에서 연료 조성이 화염전달함수 특성에 미치는 영향

  • 김진아 (강릉원주대학교 기계자동차공학부) ;
  • 김지환 (강릉원주대학교 기계자동차공학부) ;
  • 이정원 ;
  • 김대식 (강릉원주대학교 기계자동차공학부)
  • Received : 2015.06.24
  • Accepted : 2015.09.16
  • Published : 2015.09.30

Abstract

Flame transfer function is used to determine the relationship between flow fluctuations and heat release perturbations in a lean premixed gas turbine combustor. The characteristics of flame transfer function are known to depend greatly on flame geometries in addition to other various flow conditions. However, it is not easy to experimentally measure the flame transfer function under various actual combustor operating conditions in terms of time and cost. The current research tries to model the flame transfer function using CFD(Computational Fluid Dynamics). From the results, it is shown that the calculated steady flame geometry can be exactly captured with consideration of the wall heat transfer and radiations. Also, unsteady analysis results show the close characteristics of the flame transfer function to the measured one in both gain and phase.

Keywords

References

  1. K. T. Kim, J. G. Lee, H. J. Lee, B. Quay, and D. Santavicca, "Characterization of Forced Flame Response of Swirl-Stabilized Turbulent Lean-Premixed Flames in a Gas Turbine Combustor", Journal of engineering for gas turbines and power, Vol. 132, No. 4, 2010, pp. 0742-4795.
  2. 김대식, 이정원, "CFD를 이용한 희박 예혼합 연소기에서의 연소 응답 모델링", 대한기계학회논문집, 제38권, 제9호, 2014, pp. 773-779. https://doi.org/10.3795/KSME-B.2014.38.9.773
  3. 김대식, "가스터빈 희박 예혼합 연소기에서의 연소 불안정 해석을 위한 열음향 모델 기술 개발", 한국추진공학회지, 제15권, 제6호, 2011, pp. 98-106.
  4. K. T. Kim, H. J. Lee, J. G. Lee, B. Quay, and D. Santavicca, "Flame Transfer Function Measurement And Instability Frequency Prediction Using a Thermoacoustic Model, ASME Turbo Expo: Power for Land", Seam and Air, Vol. 2, Combustion, Fuels and Emissions, 2009, pp. 799-810.
  5. 김대식, 진유인, 황기영, 민성기, "연료의 미립화 및 증발 특성 데이터를 이용한 가스터빈 연소기 사이징 기법 고찰", 제19권, 제3호, 2014, pp. 101-108. https://doi.org/10.15435/JILASSKR.2014.19.3.101
  6. Y. A. Eldrainy, M. N. Jaafar, and T. M. Lazim, "Cold Flow Investigation of Primary Zone Characteristics in Combustor Utilizing Axial Air Swirler", International Journal of Mechanical and Materials Engineering, Vol. 5, No. 2, 2011, pp. 812-818.
  7. T. H. Shih, W. W. Liou, A. Shabbir, Z. Yang, and J. Zhu, "A new k-${\epsilon}$ Eddy Viscosity Model for High Reynolds Number Turbulent Flows", Computers and fluids, Vol. 24, No. 3, 1995, pp. 227-238. https://doi.org/10.1016/0045-7930(94)00032-T
  8. 황창환, "MILD Combustion의 열적 및 가스 배출특성에 대한 수치적 연구", 한국과학기술원, 석사학위논문, 2010.
  9. ANSYS Fluent 15.0 Users Guide, ANSYS inc., 2014.
  10. H. M. AbdelGayed, W. A. Abdelghaffar, and K. E. Shorbagy, "Flame Vortex Interactions in a Lean Premixed Swirl Stabilized Gas Turbine Combustor - Numerical Computations", Americal journal of scientific and industrial research, ISSN:2153-649X, 2013, pp. 449-467.

Cited by

  1. Combustion Instability Prediction Using 1D Thermoacoustic Model in a Gas Turbine Combustor vol.20, pp.4, 2015, https://doi.org/10.15435/JILASSKR.2015.20.4.241
  2. Combustion Stability Analysis using Feedback Transfer Function vol.21, pp.3, 2016, https://doi.org/10.15231/jksc.2016.21.3.024
  3. Limit Cycle Amplitude Prediction Using Results of Flame Describing Function Modeling vol.20, pp.6, 2016, https://doi.org/10.6108/KSPE.2016.20.6.046
  4. Time Lag Analysis Using Phase of Flame Transfer Function vol.21, pp.2, 2016, https://doi.org/10.15435/JILASSKR.2016.21.2.104