DOI QR코드

DOI QR Code

Oxidation of organic contaminants in water by iron-induced oxygen activation: A short review

  • Lee, Changha (School of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology)
  • Received : 2015.05.17
  • Accepted : 2015.06.08
  • Published : 2015.09.30

Abstract

Reduced forms of iron, such as zero-valent ion (ZVI) and ferrous ion (Fe[II]), can activate dissolved oxygen in water into reactive oxidants capable of oxidative water treatment. The corrosion of ZVI (or the oxidation of (Fe[II]) forms a hydrogen peroxide ($H_2O_2$) intermediate and the subsequent Fenton reaction generates reactive oxidants such as hydroxyl radical ($^{\bullet}OH$) and ferryl ion (Fe[IV]). However, the production of reactive oxidants is limited by multiple factors that restrict the electron transfer from iron to oxygen or that lead the reaction of $H_2O_2$ to undesired pathways. Several efforts have been made to enhance the production of reactive oxidants by iron-induced oxygen activation, such as the use of iron-chelating agents, electron-shuttles, and surface modification on ZVI. This article reviews the chemistry of oxygen activation by ZVI and Fe(II) and its application in oxidative degradation of organic contaminants. Also discussed are the issues which require further investigation to better understand the chemistry and develop practical environmental technologies.

Keywords

References

  1. Cater SR, Stefan MI, Bolton JT, Safarzadeh-Amiri A. UV/$H_2O_2$ Treatment of methyl tert-butyl ether in contaminated waters. Environ. Sci. Technol. 2000;34:659-662. https://doi.org/10.1021/es9905750
  2. von Gunten U. Ozonation of drinking water: Part I. Oxidation kinetics and product formation. Water Res. 2003;37:1443-1467. https://doi.org/10.1016/S0043-1354(02)00457-8
  3. Pignatello JJ, Oliveros E, MacKay A. Advanced oxidation processes for organic contaminant destruction based on the Fenton Reaction and related chemistry. Crit. Rev. Environ. Sci. Technol. 2006;36:1-84. https://doi.org/10.1080/10643380500326564
  4. Brillas E, Sires I, Oturan MA. Electro-Fenton process and related electrochemical technologies based on Fenton's reaction chemistry. Chem. Rev. 2009;109:6570-6631. https://doi.org/10.1021/cr900136g
  5. Lee JY, Jo WK. Control of methyl tertiary-butyl ether via carbon-doped photocatalysts under visible-light irradiation. Environ. Eng. Res. 2012;17:179-184. https://doi.org/10.4491/eer.2012.17.4.179
  6. Chae MS, Woo SG, Kang JK, Bae SD, Choi SI. Treatability evaluation of N-hexadecane and 1-methylnaphthalene during Fenton reaction. Environ. Eng. Res. 2012;17:217-225. https://doi.org/10.4491/eer.2012.17.4.217
  7. Kruithof JC, Kamp PC, Martijn BJ. UV/$H_2O_2$ treatment: A practical solution for organic contaminant control and primary disinfection. Ozone Sci. Eng. 2007;29:273-280. https://doi.org/10.1080/01919510701459311
  8. Reungoat J, Macova M, Escher BI, Carswell S, Mueller JF, Keller J. Removal of micropollutants and reduction of biological activity in a full scale reclamation plant using ozonation and activated carbon filtration. Water Res. 2010;44:625-637. https://doi.org/10.1016/j.watres.2009.09.048
  9. Watts R, Teel A. Treatment of contaminated soils and groundwater using ISCO. Pract. Period. Hazard. Toxic Radioact. Waste Manage. 2006;10: 2-9.
  10. Jakob L, Hashem TM, Burki S, Guindy NM, Braun AM. Vacuum-ultraviolet (VUV) photolysis of water: oxidative degradation of 4-chlorophenol. J. Photochem. Photobiol. A: Chem. 1993;75:97-103. https://doi.org/10.1016/1010-6030(93)80189-G
  11. Hoffmann MR, Martin ST, Choi W, Bahnemann DW. Environmental applications of semiconductor photocatalysis. Chem. Rev. 1995;95:69-96. https://doi.org/10.1021/cr00033a004
  12. Baldacchino G. Pulse radiolysis in water with heavy-ion beams. A short review. Radiat. Phys. Chem. 2008;77:1218-1223. https://doi.org/10.1016/j.radphyschem.2008.05.033
  13. Noradoun C, Engelmann M, McLauglin M, et al. Destruction of chlorinated phenols by dioxygen activation under aqueous room temperature and pressure conditions. Ind. Eng. Chem. Res. 2003;42:5024-5030. https://doi.org/10.1021/ie030076e
  14. Joo SH, Feitz AJ, Sedlak DL, Waite TD. Quantification of the oxidizing capacity of nanoparticulate zero-valent iron. Environ. Sci. Technol. 2005;39:1263-1268. https://doi.org/10.1021/es048983d
  15. Keenan CR, Sedlak DL. Factors affecting the yield of oxidants from the reaction of nanoparticulate zero-valent iron and oxygen. Environ. Sci. Technol. 2008;42:1262-1267. https://doi.org/10.1021/es7025664
  16. Bokare AD, Choi W. Zero-valent aluminum for oxidative degradation of aqueous organic pollutants. Environ. Sci. Technol. 2009;43:7130-7135. https://doi.org/10.1021/es9013823
  17. Wen G, Wang SJ, Ma J, et al. Oxidative degradation of organic pollutants in aqueous solution using zero valent copper under aerobic atmosphere condition. J. Hazard. Mater. 2014;275:193-199. https://doi.org/10.1016/j.jhazmat.2014.05.002
  18. Bard AJ, Parsons R, Jordan J. Standard potentials in aqueous solution. New York, Basel: Marcel Dekker, Inc.; 1985.
  19. Li L, Fan MH, Brown RC, et al. Synthesis, properties, and environmental applications of nanoscale iron-based materials: A review. Crit. Rev. Environ. Sci. Technol. 2006;36:405-431. https://doi.org/10.1080/10643380600620387
  20. Fu F, Dionysiou DD, Liu H. The use of zero-valent iron for groundwater remediation and wastewater treatment: A review. J. Hazard. Mater. 2014;267;194-205. https://doi.org/10.1016/j.jhazmat.2013.12.062
  21. Zecevic S, Drazic DM, Gojkovic S. Oxygen reduction on iron. Part III. An analysis of the rotating disk-ring electrode measurements in near neutral solutions. J. Electroanal. Chem. 1989;265:179-193. https://doi.org/10.1016/0022-0728(89)80188-3
  22. Zecevic S, Drazic DM, Gojkovic S. Oxygen reduction on iron. Part IV. The reduction of hydrogen peroxide as the intermediate in oxygen reduction reaction in alkaline solutions. Electrochim. Acta 1991;36:5-14. https://doi.org/10.1016/0013-4686(91)85172-4
  23. Hug SJ, Leupin O. Iron-catalyzed oxidation of arsenic(III) by oxygen and by hydrogen peroxide: pH-dependent formation of oxidants in the Fenton reaction. Environ. Sci. Technol. 2003;37:2734-2742. https://doi.org/10.1021/es026208x
  24. Lee H, Lee HJ, Sedlak DL, Lee C. pH-Dependent reactivity of oxidants formed by iron and copper-catalyzed decomposition of hydrogen peroxide. Chemosphere 2013;92:652-658. https://doi.org/10.1016/j.chemosphere.2013.01.073
  25. Bataineh H, Pestovsky O, Bakac A. pH-Induced mechanistic changeover from hydroxyl radicals to iron(IV) in the Fenton reaction. Chem. Sci. 2012;3:1594-1599. https://doi.org/10.1039/c2sc20099f
  26. Pestovsky O, Bakac A. Aqueous ferryl(IV) ion: Kinetics of oxygen atom transfer to substrates and oxo exchange with solvent water. Inorg. Chem. 2006;45:814-820. https://doi.org/10.1021/ic051868z
  27. Bernasconi L, Baerends EJ. Generation of ferryl species through dioxygen activation in iron/EDTA systems: A computational study. Inorg. Chem. 2009;48:527-540. https://doi.org/10.1021/ic800998n
  28. Keenan CR, Sedlak DL. Ligand-enhanced reactive oxidant generation by nanoparticulate zero-valent iron and oxygen. Environ. Sci. Technol. 2008;42:6936-6941. https://doi.org/10.1021/es801438f
  29. Lee C, Keenan CR, Sedlak DL. Polyoxometalate-enhanced oxidation of organic compounds by nanoparticulate zero-valent iron and ferrous ion in the presence of oxygen. Environ. Sci. Technol. 2008;42:4921-4926. https://doi.org/10.1021/es800317j
  30. Lee H, Lee HJ, Kim HE, Kweon J, Lee BD, Lee C. Oxidant production from corrosion of nano- and microparticulatezerovalent iron in the presence of oxygen: A comparative study. J. Hazard. Mater. 2014;265:201-207. https://doi.org/10.1016/j.jhazmat.2013.11.066
  31. Stumm W, Lee GF. Oxygenation of ferrous iron. Ind. Eng. Chem. 1961;53:143-146. https://doi.org/10.1021/ie50614a030
  32. Millero FJ, Izauirre M. Effect of ionic strength and ionic interactions on the oxidation of Fe(II). J. Sol. Chem. 1989;18:585-599. https://doi.org/10.1007/BF00664239
  33. King DW, Lounsbury HA, Millero FJ. Rates and mechanism of Fe(II) oxidation at nanomolar total iron concentrations. Environ. Sci. Technol. 1995;29:818-824. https://doi.org/10.1021/es00003a033
  34. Ai Z, Gao Z, Zhang L, He W, Yin JJ. Core−shell structure dependent reactivity of Fe@$Fe_2O_3$ nanowires on aerobic degradation of 4-chlorophenol. Environ. Sci. Technol. 2013;47:5344-5352 https://doi.org/10.1021/es4005202
  35. Pham ALT, Lee C, Doyle FM, Sedlak DL. A silica-supported iron oxide catalyst capable of activating hydrogen peroxide at neutral pH values. Environ. Sci. Technol. 2009;43:8930-8935. https://doi.org/10.1021/es902296k
  36. Lee C, Sedlak DL. Enhanced formation of oxidants from bimetallic nickel-iron nanoparticles in the presence of oxygen. Environ. Sci. Technol. 2008;42:8528-8533. https://doi.org/10.1021/es801947h
  37. Pang SY, Jiang J, Ma J. Oxidation of sulfoxides and arsenic(III) in corrosion of nanoscale zero valent iron by oxygen: evidence against ferryl ions (Fe(IV)) as active intermediates in Fenton reaction. Environ. Sci. Technol. 2011;45:307-312. https://doi.org/10.1021/es102401d
  38. Remucal CK, Lee C, Sedlak DL. Comment on "Oxidation of sulfoxides and arsenic(III) in corrosion of nanoscale zero valent iron by oxygen: evidence against ferryl Ions (Fe(IV)) as active intermediates in Fenton reaction". Environ. Sci. Technol. 2011;45:3177-3178. https://doi.org/10.1021/es104399p
  39. Wang L, Wang F, Li PN, Zhang LZ. Ferrous-tetrapolyphosphate complex induced dioxygen activation for toxic organic pollutants degradation. Sep. Purif. Technol. 2013;120:148-155. https://doi.org/10.1016/j.seppur.2013.10.002
  40. Wang L, Cao MH, Ai ZH, Zhang LZ. Dramatically enhanced aerobic atrazine degradation with Fe@$Fe_2O_3$ core-shell nanowires by tetrapolyphosphate. Environ. Sci. Technol. 2014;48:3354-3362. https://doi.org/10.1021/es404741x
  41. Lee J, Kim J, Choi W. Oxidation on zerovalent iron promoted by polyoxometalate as an electron shuttle. Environ. Sci. Technol. 2007;41:3335-3340. https://doi.org/10.1021/es062430g
  42. Kyle JH. Kinetics of the base decomposition of dodecatungstophosphate(3-) in weakly alkaline solutions. J. Chem. Soc. Dalton Trans. 1983;26:2609-2612.
  43. Jurgensen A, Moffat JB. The stability of 12-molybdosilicic, 12-tungstosilicic, 12-molybdophosphoric and 12-tungstophosphoric acids in aqueous solution at various pH. Catal. Lett. 1995;34:237-244. https://doi.org/10.1007/BF00808338
  44. Lee C, Sedlak DL. A novel homogeneous Fenton-like system with Fe(III)-phosphotungstate for oxidation of organic compounds at neutral pH values. J. Mol. Cat. A: Chem. 2009;311:1-6. https://doi.org/10.1016/j.molcata.2009.07.001
  45. Kang SH, Choi W. Oxidative degradation of organic compounds using zero-valent iron in the presence of natural organic matter serving as an electron shuttle. Environ. Sci. Technol. 2009;43:878-883. https://doi.org/10.1021/es801705f
  46. Joo SH, Feitz AJ, Waite TD. Oxidative degradation of the carbothiolate herbicide, molinate, using nanoscale zero-valent iron. Environ. Sci. Technol. 2004;38:2242-2247. https://doi.org/10.1021/es035157g
  47. Noradoun C, Cheng I F. Degradation induced by oxygen activation in a zerovalent iron/air/water system. Environ. Sci. Technol. 2005;39:7158-7163. https://doi.org/10.1021/es050137v
  48. Stieber M, Putschew A, Jekel M. Treatment of pharmaceuticals and diagnostic agents using zero-valent iron - Kinetic studies and assessment of transformation products assay. Environ. Sci. Technol. 2011;45:4944-4950. https://doi.org/10.1021/es200034j
  49. He C, Yang J, Zhu L, et al. pH-Dependent degradation of acid orange II by zero-valent iron in presence of oxygen. Sep. Purif. Technol. 2013;117:59-68. https://doi.org/10.1016/j.seppur.2013.04.028
  50. Nakatsuji Y, Salehi Z, Kawase Y. Mechanisms for removal of p-nitrophenol from aqueous solution using zero-valent iron. J. Environ. Manage. 2015;152:183-191. https://doi.org/10.1016/j.jenvman.2015.01.012
  51. Jagadevan S, Jayamurthy M, Dobson P, Thompson IP. A novel hybrid nano zerovalent iron initiated oxidation - Biological degradation approach for remediation of recalcitrant waste metalworking fluids. Water Res. 2012;46:2395-2404. https://doi.org/10.1016/j.watres.2012.02.006
  52. Englehardt J, Meeroof D, Echegoyen L, Deng Y, Raymo F, Shibata T. Oxidation of aqueous EDTA and associated organics and coprecipitation of inorganics by ambient iron-mediated aeration. Environ. Sci. Technol. 2007;41:270-276. https://doi.org/10.1021/es061605j
  53. Fu F, Han W, Tang B, Hu M, Cheng Z. Insights into environmental remediation of heavy metal and organic pollutants: Simultaneous removal of hexavalent chromium and dye from wastewater by zero-valent iron with ligand-enhanced reactivity. Chem. Eng. J. 2013;232:534-540. https://doi.org/10.1016/j.cej.2013.08.014
  54. Cao M, Wang L, Ai Z, Zhang L. Efficient remediation of pentachlorophenol contaminated soil with tetrapolyphosphate washing and subsequent ZVI/Air treatment. J. Hazard. Mater. 2015;292:27-33. https://doi.org/10.1016/j.jhazmat.2015.03.019
  55. Wang L, Cao M, Ai Z, Zhang L. Design of a highly efficient and wide pH electro-Fenton oxidation system with molecular oxygen activated by ferrous-tetrapolyphosphate complex. Environ. Sci. Technol. 2015;49:3032-3039. https://doi.org/10.1021/es505984y
  56. Lee C, Kim JY, Lee WI, Nelson KL, Yoon J, Sedlak DL. Bactericidal effect of zero-valent iron nanoparticles on Escherichia coli. Environ. Sci. Technol. 2008;42:4927-4933. https://doi.org/10.1021/es800408u
  57. Kim JY, Lee C, Love DC, Sedlak DL, Yoon J, Nelson KL. Inactivation of $MS_2$ coliphage by ferrous ion and zero-valent iron nanoparticles. Environ. Sci. Technol. 2011;45:6978-6984. https://doi.org/10.1021/es201345y
  58. Deng Y, Englehardt JD, et al. Ambient iron-mediated aeration (IMA) for water reuse. Water Res. 2013;47:850-858. https://doi.org/10.1016/j.watres.2012.11.005

Cited by

  1. Photodegradation of 17α-ethynylestradiol in nitrate aqueous solutions vol.21, pp.2, 2016, https://doi.org/10.4491/eer.2016.008
  2. Nanoparticulate zero-valent iron coupled with polyphosphate: the sequential redox treatment of organic compounds and its stability and bacterial toxicity vol.4, pp.2, 2017, https://doi.org/10.1039/C6EN00502K
  3. Core–Shell Nanowires for Enhanced Reactive Oxygen Species Generation and Aerobic 4-Chlorophenol Degradation vol.51, pp.14, 2017, https://doi.org/10.1021/acs.est.7b01896
  4. Metal Hexacyanometallate Nanoparticles: Spectroscopic Investigation on the Influence of Oxidation State of Metals on Catalytic Activity vol.148, pp.7, 2018, https://doi.org/10.1007/s10562-018-2411-7
  5. Differential Microbicidal Effects of Bimetallic Iron-Copper Nanoparticles on Escherichia coli and MS2 Coliphage vol.53, pp.5, 2019, https://doi.org/10.1021/acs.est.8b06077
  6. Pre-magnetization for enhancing the iron-catalyzed activation of peroxymonosulfate via accelerating the corrosion of Fe0 vol.79, pp.7, 2015, https://doi.org/10.2166/wst.2019.122
  7. Evaluation of commercial zerovalent iron sources in combination with solar energy to remove microcontaminants from natural water at circumneutral pH vol.286, pp.p1, 2015, https://doi.org/10.1016/j.chemosphere.2021.131557