DOI QR코드

DOI QR Code

Integrating approach to size and site at a sanitary landfill in Selangor state, Malaysia

  • Younes, Mohammad Khairi (Department of Civil and Structural Engineering, Universiti Kebangsaan Malaysia) ;
  • Basri, Noor Ezlin Ahmad (Department of Civil and Structural Engineering, Universiti Kebangsaan Malaysia) ;
  • Nopiaha, Zulkifli Mohammad (Department of Civil and Structural Engineering, Universiti Kebangsaan Malaysia) ;
  • Basri, Hassan (Department of Civil and Structural Engineering, Universiti Kebangsaan Malaysia) ;
  • Abushammala, Mohammed F.M. (Department of Civil Engineering, Middle East College) ;
  • Maulud, Khairul Nizam Abdul (Department of Civil and Structural Engineering, Universiti Kebangsaan Malaysia)
  • Received : 2015.05.21
  • Accepted : 2015.08.05
  • Published : 2015.09.30

Abstract

Solid waste production increases due to population and consumption increments. Landfill is the ultimate destination for all kinds of municipal solid waste; and is the most convenient waste disposal method in developing countries. To minimize investment and operational costs and society's opposition towards locating landfills nearby, proper landfill sizing and siting are essential. In this study, solid waste forecasting using Autoregressive Integrating Moving Average (ARIMA) was integrated with government future plans and waste composition to estimate the required landfill area for the state of Selangor, Malaysia. Landfill siting criteria were then prioritized based on expert's preferences. To minimize ambiguity and the uncertainty of the criteria prioritizing process, the expert's preferences were treated using integrated Median Ranked Sample Set (MRSS) and Analytic Hierarchy Process (AHP) models. The results show that the required landfill area is 342 hectares and the environmental criteria are the most important; with a priority equal to 48%.

Keywords

References

  1. Koroneos CJ, Nanaki EA. Integrated solid waste management and energy production-a life cycle assessment approach: the case study of the city of Thessaloniki. J. Clean. Prod. 2012;27:141-150. https://doi.org/10.1016/j.jclepro.2012.01.010
  2. Rimaityte I, Ruzgas T, Denafas G, Racys V, Martuzevicius D. Application and evaluation of forecasting methods for municipal solid waste generation in an eastern-European city. Waste. Manage. Res. 2012;30:89-98. https://doi.org/10.1177/0734242X10396754
  3. Unnikrishnan S, Singh A. Energy recovery in solid waste management through CDM in India and other countries. Resour. Conserv. Recy. 2010;54:630-640. https://doi.org/10.1016/j.resconrec.2009.11.003
  4. Beigl P, Lebersorger S, Salhofer S. Modelling municipal solid waste generation: A review. Waste Manag. 2008;28:200-214. https://doi.org/10.1016/j.wasman.2006.12.011
  5. Cho HS, Moon HS, Kim JY. Effect of quantity and composition of waste on the prediction of annual methane potential from landfills. Bioresour. Technol. 2012;109:86-92. https://doi.org/10.1016/j.biortech.2012.01.026
  6. Younes M, Zulkifli N, Nadi B, et al. Investigation of Solid Waste Characterization, Composition and Generation Using Management of Environmental Systems in Zarqa, Jordan. Asian. J. Chem. 2013;25:9523-9526.
  7. Akil A, Ho C. Towards sustainable solid waste management: Investigating household participation in solid waste management. IOP Conference Series: Earth and Environmental Science 2014;18:012163.
  8. Agamuthu P, Hamid FS, Khidzir K. Evolution of solid waste management in Malaysia: impacts and implications of the solid waste bill, 2007. J. Mater. Cycles Waste 2009;11:96-103. https://doi.org/10.1007/s10163-008-0231-3
  9. Makridakis S, Wheelwright SC, Hyndman RJ. Forecasting methods and applications. John Wiley & Sons; 2008.
  10. Chung SS. Projecting municipal solid waste: The case of Hong Kong SAR. Resour. Conserv. Recy. 2010;54:759-768. https://doi.org/10.1016/j.resconrec.2009.11.012
  11. El-Shafie A, Jaafer O, Seyed A. Adaptive neuro-fuzzy inference system based model for rainfall forecasting in Klang River, Malaysia. Int. J. Phys. Sci. 2011;6:2875-2888.
  12. Agamuthu P, Fauziah S. Challenges and issues in moving towards sustainable landfilling in a transitory country-Malaysia. Waste Manage. Res. 2011;29:13-19. https://doi.org/10.1177/0734242X10383080
  13. Fauziah S, Agamuthu P. Trends in sustainable landfilling in Malaysia, a developing country. Waste Manage. Res. 2012;30:656-663. https://doi.org/10.1177/0734242X12437564
  14. Johari A, Ahmed SI, Hashim H, Alkali H, Ramli M. Economic and environmental benefits of landfill gas from municipal solid waste in Malaysia. Renew. Sust. Energ. Rev. 2012;16:2907-2912. https://doi.org/10.1016/j.rser.2012.02.005
  15. Tarmudi Z, Abdullah ML, Md Tap AO. An overview of municipal solid wastes generation in Malaysia. Jurnal Teknologi. 2012;51:1-15.
  16. Khashei M, Bijari M. A novel hybridization of artificial neural networks and ARIMA models for time series forecasting. Appl. Soft. Comput. 2011;11:2664-2675. https://doi.org/10.1016/j.asoc.2010.10.015
  17. Navarro-Esbri J, Diamadopoulos E, Ginestar D. Time series analysis and forecasting techniques for municipal solid waste management. Resour. Conserv. Recy. 2002;35:201-214. https://doi.org/10.1016/S0921-3449(02)00002-2
  18. Younes MK, Basri N, Nopiah Z, Basri H, Abushammala MF. Use of a Combination of MRSS-ANP for Making an Innovative Landfill Siting Decision Model. Math. probl. eng. 2015;501:381926.
  19. Afzali A, Samani J, Rashid M. Municipal landfill site selection for Isfahan City by use of fuzzy logic and analytic hierarchy process. J. environ. health sci. eng. 2011;8:11-15.
  20. Al-Hanbali A, Alsaaideh B, Kondoh A. Using GIS-Based Weighted Linear Combination Analysis and Remote Sensing Techniques to Select Optimum Solid Waste Disposal Sites within Mafraq City, Jordan. J. Geog. Info. Sys. 2011;3:267-278.
  21. Geneletti D. Combining stakeholder analysis and spatial multicriteria evaluation to select and rank inert landfill sites. Waste Manage. 2010;30:328-337. https://doi.org/10.1016/j.wasman.2009.09.039
  22. Anifowose Y, Omole K, Akingbade O. Waste disposal site selection using remote sensing and GIS: a study of akure and its environs, Southwest-Nigeria. COLERM. Proceedings 2012;2:526-533.
  23. Yesilnacar MI, Suzen ML, Kaya BS, Doyuran V. Municipal solid waste landfill site selection for the city of Sanliurfa- Turkey: an example using MCDA integrated with GIS. Int. J. Digial Earth 2012;5:147-164. https://doi.org/10.1080/17538947.2011.583993
  24. Tarmudi Z, Abdullah ML, Tap M, Osman A. Evaluating municipal solid waste disposal options by AHP-based linguistic variable weight. Matematika 2010;26:1-14.
  25. Huang IB, Keisler J, Linkov I. Multi-criteria decision analysis in environmental sciences: Ten years of applications and trends. Sci. Total Environ. 2011;409:3578-3594. https://doi.org/10.1016/j.scitotenv.2011.06.022
  26. Aydi A, Zairi M, Dhia HB. Minimization of environmental risk of landfill site using fuzzy logic, analytical hierarchy process, and weighted linear combination methodology in a geographic information system environment. Environ. Earth Sci. 2013;68:1375-1389. https://doi.org/10.1007/s12665-012-1836-3
  27. Vasiljevic TZ, Srdjevic Z, Bajcetic R, Miloradov MV. GIS and the analytic hierarchy process for regional landfill site selection in transitional countries: a case study from Serbia. Environ. Manage. 2012;49:445-458. https://doi.org/10.1007/s00267-011-9792-3
  28. Sener S, Sener E, Nas B, Karaguzel R. Combining AHP with GIS for landfill site selection: a case study in the Lake BeySehir catchment area (Konya, Turkey). Waste manage. 2010;30:2037-2046. https://doi.org/10.1016/j.wasman.2010.05.024
  29. Demesouka O, Vavatsikos A, Anagnostopoulos K. Suitability analysis for siting MSW landfills and its multicriteria spatial decision support system: Method, implementation and case study. Waste manage. 2013;33:1190-1206. https://doi.org/10.1016/j.wasman.2013.01.030
  30. Ibrahim K, Syam M, Al-Omari AI. Estimating the population mean using stratified median ranked set sampling. Appl. math. sci. 2010;4:2341-2354.
  31. Ibrahim K. On Comparison of Some Variation of Ranked Set Sampling. Sains Malays. 2011;40:397-401.
  32. Husby CE, Stasny EA, Wolfe DA. An application of ranked set sampling for mean and median estimation using USDA crop production data. J. Agric. Biol. Environ. Stat. 2005;10:354-373. https://doi.org/10.1198/108571105X58234
  33. Hossain S, Muttlak H. Hypothesis tests on the scale parameter using median ranked set sampling. Statistica 2006;66:415-434.
  34. Deshpande JV. Ranked set sampling for environmental studies. In: Indian Institute of Science Education and Research; 2013 Mar 4-6; Pune, India. p. 1-36.
  35. Murray R, Ridout M, Cross J. The use of ranked set sampling in spray deposit assessment. Asp. Appl. Biol. 2000;57:141-146.
  36. Wolfe DA. Ranked set sampling: its relevance and impact on statistical inference. ISRN Probab. Statist. 2012;2012.
  37. Holman N. Community participation: using social network analysis to improve developmental benefits. Environ. Plann. C. Gov. Policy 2008;26:525. https://doi.org/10.1068/c0719p
  38. Tarmudi Z, Abdullah ML, Tap M, Osman A. A new fuzzy multi-criteria decision making approach for municipal solid waste disposal options. J. Sustain. Sci. Manage. 2009;4:20-37.
  39. T.M.J.A. Cooray. Applied Time Series Analysis and Forecasting. Oxford, UK: Alpha Science International Ltd. ; 2008.
  40. Younes MK, Nopiah ZM, Basri NEA, Basri H. Medium term municipal solid waste generation prediction by autoregressive integrated moving average. AIP Conf. Proc. 2014;1613:427-435.
  41. Kushwah SPS, Rawat K, Gupta P. Analysis and Comparison of Efficient Techniques of Clustering Algorithms in Data Mining. International Journal of Innovative Technology and Exploring Engineering (IJITEE). 2012;1:2278-3075.
  42. Alonso JA, Lamata MT. Consistency in the analytic hierarchy process: a new approach. Int. J. Uncertain. Fuzz. 2006;14:445-459. https://doi.org/10.1142/S0218488506004114
  43. Reed MS. Stakeholder participation for environmental management: a literature review. Biol. Conserv. 2008;141:2417-2431. https://doi.org/10.1016/j.biocon.2008.07.014
  44. Luyet V, Schlaepfer R, Parlange MB, Buttler A. A framework to implement Stakeholder participation in environmental projects. J. Environ. Manage. 2012;111:213-219. https://doi.org/10.1016/j.jenvman.2012.06.026
  45. Ahmad SZ, Ahamad MSS, Yusoff MS. Spatial effect of new municipal solid waste landfill siting using different guidelines. Waste Manage. Res. 2014;32:24-33. https://doi.org/10.1177/0734242X13507313
  46. Anderson D, Sweeney D, Williams T, Camm J, Martin R. An Introduction to Management Science: Quantitative Approaches to Decision Making. 13th ed. Mason, OH: South-Western Cengage Learning; 2011.
  47. Ismail SN. Assessing Environmental Impacts and Siting consideration for Landfill in Developing Countries: A Case Study of Malaysia [dissertation]. Norwich: Univ. of East Anglia; 2011.
  48. Nadi B, Mahmud A, Ahmad N, Farjad B, Arvinpil B, Amani A. Managing of urban solid waste by geoinformatics technology. International Geoinformatics Research and Development Journal 2010;1:70-80.
  49. DoE(Department of Environment). EIA Guidelines for Development of Solid Waste Sanitary Landfill. Ministry of Natural Resources and Environment, Malaysia; 2012.
  50. Al-Hanbali A, Alsaaideh B, Kondoh A. Using GIS-based weighted linear combination analysis and remote sensing techniques to select optimum solid waste disposal sites within Mafraq City, Jordan. Journal of Geographic Information Syste. 2011;3:267. https://doi.org/10.4236/jgis.2011.34023
  51. Agamuthu P, Tanaka M. Municipal Solid Waste Management in Asia and the Pacific Islands. Singapore : Springer; 2014:195-232.
  52. Seok Lim J, Missios P. Does size really matter? Landfill scale impacts on property values. Appl. Econ. Letters 2007;14:719-723. https://doi.org/10.1080/13504850600592531

Cited by

  1. An Integrated Method for the Selection of Optimum Locations for Landfilling Utilizing GIS: A Case Study of the State of Kuwait vol.10, pp.02, 2019, https://doi.org/10.4236/jep.2019.102015
  2. Biogas and biofertilizer production from organic fraction municipal solid waste for sustainable circular economy and environmental protection in Malaysia vol.776, pp.None, 2015, https://doi.org/10.1016/j.scitotenv.2021.145961