DOI QR코드

DOI QR Code

Removal of a synthetic broad-spectrum antimicrobial agent, triclosan, in wastewater treatment systems: A short review

  • Lee, Do Gyun (Earth Research Institute, University of California)
  • 투고 : 2014.11.30
  • 심사 : 2015.03.02
  • 발행 : 2015.06.30

초록

Contaminants of emerging concern (CECs) including endocrine disrupting compounds (EDCs) and pharmaceuticals and personal care product chemicals (PPCPs) have recently received more attention because of their occurrence in water bodies and harmful impacts on human health and aquatic organisms. Triclosan is widely used as a synthetic broad-spectrum antimicrobial agent due to its antimicrobial efficacy. However, triclosan detected in aquatic environment has been recently considered as one of CECs, because of the potential for endocrine disruption, the formation of toxic by-products and the development of cross-resistance to antibiotics in aquatic environment. This comprehensive review focuses on the regulations, toxicology, fate and transport, occurrence and removal efficiency of triclosan. Overall, this review aims to provide better understanding of triclosan and insight into application of biological treatment process as an efficient method for triclosan removal.

키워드

참고문헌

  1. Morrall D, McAvoy D, Schatowitz B, et al. A field study of triclosan loss rates in river water (Cibolo Creek, TX). Chemosphere 2004;54:653-660. https://doi.org/10.1016/j.chemosphere.2003.08.002
  2. Nakada N, Yasojima M, Okayasu Y, Komori K, Suzuki Y. Mass balance analysis of triclosan, diethyltoluamide, crotamiton and carbamazepine in sewage treatment plants. Water Sci. Technol. 2010;61:1739-1747. https://doi.org/10.2166/wst.2010.100
  3. Kolpin DW, Furlong ET, Meyer MT, et al. Response to comment on "Pharmaceuticals, hormones, and other organic wastewater contaminants in US streams, 1999-2000: A national reconnaissance". Environ. Sci. Technol. 2002;36:4004. https://doi.org/10.1021/es0201350
  4. Kinney CA, Furlong ET, Kolpin DW, et al. Bioaccumulation of pharmaceuticals and other anthropogenic waste indicators in earthworms from agricultural soil amended with biosolid or swine manure. Environ. Sci. Technol. 2008;42:1863-1870. https://doi.org/10.1021/es702304c
  5. Queckenberg C, Meins J, Wachall B, et al. Absorption, pharmacokinetics, and safety of triclosan after dermal administration. Antimicrob. Agents Chemother. 2010;54:570-572. https://doi.org/10.1128/AAC.00615-09
  6. Sandborgh-Englund G, Adolfsson-Erici M, Odham G, Ekstrand J. Pharmacokinetics of triclosan following oral ingestion in humans. J. Toxicol. Environ. Health A 2006;69:1861-1873. https://doi.org/10.1080/15287390600631706
  7. Adolfsson-Erici M, Pettersson M, Parkkonen J, Sturve J. Triclosan, a commonly used bactericide found in human milk and in the aquatic environment in Sweden. Chemosphere 2002;46:1485-1489. https://doi.org/10.1016/S0045-6535(01)00255-7
  8. Allmyr M, Adolfsson-Erici M, McLachlan MS, Sandborgh-Englund G. Triclosan in plasma and milk from Swedish nursing mothers and their exposure via personal care products. Sci. Total Environ. 2006;372:87-93. https://doi.org/10.1016/j.scitotenv.2006.08.007
  9. Dayan AD. Risk assessment of triclosan [Irgasan] in human breast milk. Food Chem. Toxicol. 2007;45:125-129. https://doi.org/10.1016/j.fct.2006.08.009
  10. Singer H, Mueller S, Tixier C, Pillonel L. Triclosan: occurrence and fate of a widely used biocide in the aquatic environment: field measurements in wastewater treatment plants, surface waters, and lake sediments. Environ. Sci. Technol. 2002;36: 4998-5004. https://doi.org/10.1021/es025750i
  11. Yazdankhah SP, Scheie AA, Hoiby EA, et al. Triclosan and antimicrobial resistance in bacteria: an overview. Microb. Drug Resist. 2006;12:83-90. https://doi.org/10.1089/mdr.2006.12.83
  12. Schweizer HP. Triclosan: a widely used biocide and its link to antibiotics. FEMS Microbiol. Lett. 2001;202:1-7. https://doi.org/10.1111/j.1574-6968.2001.tb10772.x
  13. Halden RU, Paull DH. Co-occurrence of triclocarban and triclosan in US water resources. Environ. Sci. Technol. 2005;39: 1420-1426. https://doi.org/10.1021/es049071e
  14. Latch DE, Packer JL, Arnold WA, McNeill K. Photochemical conversion of triclosan to 2,8-dichlorodibenzo-p-dioxin in aqueous solution. J. Photochem. Photobiol. A Chem. 2003;158: 63-66. https://doi.org/10.1016/S1010-6030(03)00103-5
  15. Braoudaki M, Hilton AC. Low level of cross-resistance between triclosan and antibiotics in Escherichia coli K-12 and E. coli O55 compared to E.coli O157. FEMS Microbiol. Lett. 2004;235: 305-309. https://doi.org/10.1111/j.1574-6968.2004.tb09603.x
  16. Tatarazako N, Ishibashi H, Teshima K, Kishi K, Arizono K. Effects of triclosan on varios aquatic organisms. Environ. Sci.: Int. J. Environ. Physiol. Toxicol. 2004;11:133-140.
  17. Gee RH, Charles A, Taylor N, Darbre PD. Oestrogenic and androgenic activity of triclosan in breast cancer cells. J. Appl. Toxicol. 2008;28:78-91. https://doi.org/10.1002/jat.1316
  18. Foran CM, Bennett ER, Benson WH. Developmental evaluation of a potential non-steroidal estrogen: triclosan. Mar. Environ. Res. 2000;50:153-156. https://doi.org/10.1016/S0141-1136(00)00080-5
  19. Ishibashi H, Tachibana K, Tsuchimoto M, et al. Effects of nonylphenol and phytoestrogen-enriched diet on plasma vitellogenin, steroid hormone, hepatic cytochrome P450 1A, and glutathione-S-transferase values in goldfish (Carassius auratus). Comparative Med. 2004;54:54-62.
  20. Jiang J, Pang SY, Ma J. Oxidation of triclosan by permanganate (Mn(VII)): importance of ligands and in situ formed manganese oxides. Environ. Sci. Technol. 2009;43:8326-8331. https://doi.org/10.1021/es901663d
  21. Liyanapatirana C, Gwaltney SR, Xia K. Transformation of triclosan by Fe(III)-saturated montmorillonite. Environ. Sci. Technol. 2010;44:668-674. https://doi.org/10.1021/es902003f
  22. Rafqah S, Wong-Wah-Chung P, Nelieu S, Einhorn J, Sarakha M. Phototransformation of triclosan in the presence of $TiO_2$ in aqueous suspension: Mechanistic approach. Appl. Catal. B Environ. 2006;66:119-125. https://doi.org/10.1016/j.apcatb.2006.03.004
  23. Suarez S, Dodd MC, Omil F, von Gunten U. Kinetics of triclosan oxidation by aqueous ozone and consequent loss of antibacterial activity: relevance to municipal wastewater ozonation. Water Res. 2007;41:2481-2490. https://doi.org/10.1016/j.watres.2007.02.049
  24. Zhang HC, Huang CH. Oxidative transformation of triclosan and chlorophene by manganese oxides. Environ. Sci. Technol. 2003;37:2421-2430. https://doi.org/10.1021/es026190q
  25. Bokare V, Murugesan K, Kim YM, Jeon JR, Kim EJ, Chang YS. Degradation of triclosan by an integrated nano-bio redox process. Bioresour. Technol. 2010;101:6354-6360. https://doi.org/10.1016/j.biortech.2010.03.062
  26. Sanchez-Prado L, Llompart M, Lores M, Garcia-Jares C, Bayona JM, Cela R. Monitoring the photochemical degradation of triclosan in wastewater by UV light and sunlight using solid-phase microextraction. Chemosphere 2006;65:1338-1347. https://doi.org/10.1016/j.chemosphere.2006.04.025
  27. Tixier C, Singer HP, Canonica S, Muller SR. Phototransformation of triclosan in surface waters: a relevant elimination process for this widely used biocide - laboratory studies, field measurements, and modeling. Environ. Sci. Technol. 2002;36:3482-3489. https://doi.org/10.1021/es025647t
  28. Behera SK, Oh SY, Park HS. Sorption of triclosan onto activated carbon, kaolinite and montmorillonite: effects of pH, ionic strength, and humic acid. J. Hazard Mater. 2010;179:684-691. https://doi.org/10.1016/j.jhazmat.2010.03.056
  29. Hay AG, Dees PM, Sayler GS. Growth of a bacterial consortium on triclosan. FEMS Microbiol. Lett. 2001;36:105-112. https://doi.org/10.1111/j.1574-6941.2001.tb00830.x
  30. Stasinakis AS, Kordoutis CI, Tsiouma VC, Gatidou G, Thomaidis NS. Removal of selected endocrine disrupters in activated sludge systems: effect of sludge retention time on their sorption and biodegradation. Bioresour. Technol. 2010; 101:2090-2095. https://doi.org/10.1016/j.biortech.2009.10.086
  31. Meade MJ, Waddell RL, Callahan TM. Soil bacteria Pseudomonas putida and Alcaligenes xylosoxidans subsp denitrificans inactivate triclosan in liquid and solid substrates. FEMS Microbiol. Lett. 2001;204:45-48. https://doi.org/10.1111/j.1574-6968.2001.tb10860.x
  32. Roh H, Subramanya N, Zhao F, Yu CP, Sandt J, Chu KH. Biodegradation potential of wastewater micropollutants by ammonia-oxidizing bacteria. Chemosphere 2009;77:1084-1089. https://doi.org/10.1016/j.chemosphere.2009.08.049
  33. Hundt K, Martin D, Hammer E, Jonas U, Kindermann MK, Schauer F. Transformation of triclosan by Trametes versicolor and Pycnoporus cinnabarinus. Appl. Environ. Microbiol. 2000;66:4157-4160. https://doi.org/10.1128/AEM.66.9.4157-4160.2000
  34. Kim YM, Murugesan K, Schmidt S, et al. Triclosan susceptibility and co-metabolism - a comparison for three aerobic pollutant-degrading bacteria. Bioresour. Technol. 2011;102:2206-2212. https://doi.org/10.1016/j.biortech.2010.10.009
  35. Lee DG, Zhao F, Rezenom YH, Russell DH, Chu KH. Biodegradation of triclosan by a wastewater microorganism. Water Res. 2012;46:4226-4234. https://doi.org/10.1016/j.watres.2012.05.025
  36. Lee DG, Chu KH. Effects of growth substrate on triclosan biodegradation potential of oxygenase-expressing bacteria. Chemosphere 2013;93:1904-1911. https://doi.org/10.1016/j.chemosphere.2013.06.069
  37. Kroon AGM, van Ginkel CG. Complete mineralization of dodecyldimethylamine using a two-membered bacterial culture. Environ. Microbiol. 2001;3:131-136. https://doi.org/10.1046/j.1462-2920.2001.00170.x
  38. Bhargava HN, Leonard PA. Triclosan: applications and safety. Am. J. Infect. Control 1996;24:209-218. https://doi.org/10.1016/S0196-6553(96)90017-6
  39. Veldhoen N, Skirrow RC, Osachoff H, et al. The bactericidal agent triclosan modulates thyroid hormone-associated gene expression and disrupts postembryonic anuran development. Aquat. Toxicol. 2006;80:217-227. https://doi.org/10.1016/j.aquatox.2006.08.010
  40. Crofton KM, Paul KB, DeVito MJ, Hedge JM. Short-term in vivo exposure to the water contaminant triclosan: evidence for disruption of thyroxine. Environ. Toxicol. Pharmacol. 2007;24:194-197. https://doi.org/10.1016/j.etap.2007.04.008
  41. Allmyr M, Harden F, Toms LML, et al. The influence of age and gender on triclosan concentrations in Australian human blood serum. Sci. Total Environ. 2008;393:162-167. https://doi.org/10.1016/j.scitotenv.2007.12.006
  42. Winter RA. Consumer's dictionary of cosmetic ingredients. 4th ed. New York: Crown Trade Paperbacks; 1994.
  43. Fuerhacker M, Haile TD. Treatment and reuse of sludge. In: Barcelo D, Petrovic M, Afferden M, eds. waste water treatement and reuse in the Mediterranean region. The Handbook Environ. Chem. Springer-Verlag Berlin Heidelberg; 2011(14). p. 63-92.
  44. Rodricks JV, Swenberg JA, Borzelleca JF, Maronpot RR, Shipp AM. Triclosan: a critical review of the experimental data and development of margins of safety for consumer products. Crit. Rev. Toxicol. 2010;40:422-484. https://doi.org/10.3109/10408441003667514
  45. Kanetoshi A, Katsura E, Ogawa H, Ohyama T, Kaneshima H, Miura T. Acute toxicity, percutaneous-absortion and effects on hepatic mixed-function oxidase activities of 2,4,4'-trichloro-2'-hydroxydiphenyl ether (Irgasan DP300) and its chlorinated derivatives. Arch. Environ. Contam. Toxicol. 1992;23:91-98.
  46. DR Orvos, Versteeg DJ, Inauen J, et al. Aquatic toxicity of triclosan. Environ. Toxicol. Chem. 2002;21:1338-1349. https://doi.org/10.1002/etc.5620210703
  47. Ishibashi H, Matsumura N, Hirano M, et al. Effects of triclosan on the early life stages and reproduction of medaka Oryzias latipes and induction of hepatic vitellogenin. Aquat. Toxicol. 2004;67:167-179. https://doi.org/10.1016/j.aquatox.2003.12.005
  48. Dussault EB, Balakrishnan VK, Sverko E, Solomon KR, Sibley PK. Toxicity of human pharmaceuticals and personal care products to benthic invertebrates. Environ. Toxicol. Chem. 2008;27: 425-432. https://doi.org/10.1897/07-354R.1
  49. Capdevielle M, Egmond RV, Whelan M, et al. Consideration of exposure and species sensitivity of triclosan in the freshwater environment. Integr. Environ. Assess. Manag. 2008;4:15-23. https://doi.org/10.1897/IEAM_2007-022.1
  50. Ricart M, Guasch H, Alberch M, et al. Triclosan persistence through wastewater treatment plants and its potential toxic effects on river biofilms. Aquat. Toxicol. 2010;100:346-353. https://doi.org/10.1016/j.aquatox.2010.08.010
  51. Oliveira R, Domingues I, Grisolia CK, Soares A. Effects of triclosan on zebrafish early-life stages and adults. Environ. Sci. Pollut. Res. 2009;16:679-688. https://doi.org/10.1007/s11356-009-0119-3
  52. Nassef M, Matsumoto S, Seki M, et al. Pharmaceuticals and ersonal care products toxicity to Japanese medaka fish (Oryzias latipes). J. Fac. Agric. Kyushu U. 2009;54:407-411.
  53. Norris DO, Carr JA. Endocrine disruption: biological basis for health effects in wildlife and humans. Oxford; Oxford University Press: 2005.
  54. Fort DJ, Rogers RL, Gorsuch JW, Navarro LT, Peter R, Plautz JR. Triclosan and anuran metamorphosis: no effect on tyroid-mediated metamorphosis in Xenopus laevis. Toxicol. Sci. 2010;113:392-400. https://doi.org/10.1093/toxsci/kfp280
  55. Fort DJ, Mathis MB, Hanson W, et al. Triclosan and thyroid-mediated metamorphosis in anurans: differentiating growth effects from thyroid-driven metamorphosis in Xenopus laevis. Toxicol. Sci. 2011;121:292-302. https://doi.org/10.1093/toxsci/kfr069
  56. Jacobs MN, Nolan GT, Hood SR. Lignans, bacteriocides and organochlorine compounds activate the human pregnane X receptor (PXR). Toxicol. Appl. Pharmacol. 2005;209:123-133. https://doi.org/10.1016/j.taap.2005.03.015
  57. Matsumura N, Ishibashi H, Hirano M, et al. Effects of nonylphenol and triclosan on production of plasma vitellogenin and testosterone in male South African clawed frogs (Xenopus laevis). Biol. Pharm. Bull. 2005;28:1748-1751. https://doi.org/10.1248/bpb.28.1748
  58. Zorrilla LM, Gibson EK, Jeffay SC, et al. The effects of triclosan on puberty and thyroid Hormones in male wistar rats. Toxicol. Sci. 2009;107:56-64. https://doi.org/10.1093/toxsci/kfn225
  59. Kumar V, Chakraborty A, Kural MR, Roy P. Alteration of testicular steroidogenesis and histopathology of reproductive system in male rats treated with triclosan. Reprod. Toxicol. 2009;27:177-185. https://doi.org/10.1016/j.reprotox.2008.12.002
  60. Jones RD, Jampani HB, Newman JL, Lee AS. Triclosan: a review of effectiveness and safety in health care settings. Am. J. Infect. Control. 2000;28:184-196. https://doi.org/10.1067/mic.2000.102378
  61. McMurry LM., Oethinger M, Levy SB. Triclosan targets lipid synthesis. Nature 1998;394:531-532. https://doi.org/10.1038/28970
  62. Russell AD. Biocide use and antibiotic resistance: the relevance of laboratory findings to clinical and environmental situations. Lancet. Infect. Dis. 2003;3:794-803. https://doi.org/10.1016/S1473-3099(03)00833-8
  63. Levy SB. Antibacterial household products: cause for concern. Emerg. Infect. Dis. 2001;7:512-515. https://doi.org/10.3201/eid0707.017705
  64. Bedoux G, Roig B, Thomas O, Dupont V, Le Bot B. Occurrence and toxicity of antimicrobial triclosan and by-products in the environment. Environ. Sci. Pollut. Res. 2012;19:1044-1065. https://doi.org/10.1007/s11356-011-0632-z
  65. Reiss R, Mackay N, Habig C, Griffin J. An ecological risk assessment for triclosan in lotic systems following discharge from wastewater treatment plants in the United States. Environ. Toxicol. Chem. 2002;21:2483-2492. https://doi.org/10.1002/etc.5620211130
  66. Cha J, Cupples AM. Detection of the antimicrobials triclocarban and triclosan in agricultural soils following land application of municipal biosolids. Water Res. 2009;43:2522-2530. https://doi.org/10.1016/j.watres.2009.03.004
  67. Lozano N, Rice CP, Ramirez M, Torrents A. Fate of triclosan in agricultural soils after biosolid applications. Chemosphere 2010;78:760-766. https://doi.org/10.1016/j.chemosphere.2009.10.043
  68. NICNAS T. Priority existing chemical assessment report no. 30. National Industrial Chemicals Notification and Assessment Scheme, Department of Health and Ageing, Australian Government, Sydney, Australia; 2009.
  69. Kim JW, Ishibashi H, Hirano M, et al. Contamination of pharmaceutical and personal care products in sewage treatment plants and surface waters in South Korea and their removal during activated sludge treatment. J. Environ. Chem. 2010;20:127-135. https://doi.org/10.5985/jec.20.127
  70. Behera SK, Kim HW, Oh JE, Park HS. Occurrence and removal of antibiotics, hormones and several other pharmaceuticals in wastewater treatment plants of the largest industrial city of Korea. Sci. Total Environ. 2011;409:4351-4360. https://doi.org/10.1016/j.scitotenv.2011.07.015
  71. McAvoy DC, Schatowitz B, Jacob M, Hauk A, Eckhoff WS. Measurement of triclosan in wastewater treatment systems. Environ. Toxicol. Chem. 2002;21:1323-1329. https://doi.org/10.1002/etc.5620210701
  72. Chalew TEA, Halden RU. Environmental exposure of aquatic and terrestrial biota to triclosan and triclocarban. J. Am. Water Res. Assoc. 2009;45:4-13. https://doi.org/10.1111/j.1752-1688.2008.00284.x
  73. Kim SD, Cho J, Kim IS, Vanderford BJ, Snyder SA. Occurrence and removal of pharmaceuticals and endocrine disruptors in South Korean surface, drinking, and waste waters. Water Res. 2007;41:1013-1021. https://doi.org/10.1016/j.watres.2006.06.034
  74. Ryu J, Yoon Y, Oh J. Occurrence of endocrine disrupting compounds and pharmaceuticals in 11 WWTPs in Seoul, Korea. KSCE J. Civil Eng. 2011;15:57-64. https://doi.org/10.1007/s12205-011-0913-6
  75. Yoon Y, Ryu J, Oh J, Choi BG, Snyder SA. Occurrence of endocrine disrupting compounds, pharmaceuticals, and personal care products in the Han River (Seoul, South Korea). Sci. Total Environ. 2010;408:636-643. https://doi.org/10.1016/j.scitotenv.2009.10.049
  76. Aguera A, Fernandez-Alba AR, Piedra L, Mezcua M, Gomez MJ. Evaluation of triclosan and biphenylol in marine sediments and urban wastewaters by pressurized liquid extraction and solid phase extraction followed by gas chromatography mass spectrometry and liquid chromatography mass spectrometry. Anal. Chim. Acta 2003;480:193-205. https://doi.org/10.1016/S0003-2670(03)00040-0
  77. Miller TR, Heidler J, Chillrud SN, et al. Fate of triclosan and evidence for reductive dechlorination of triclocarban in estuarine sediments. Environ. Sci. Technol. 2008;42:4570-4576. https://doi.org/10.1021/es702882g
  78. Lapworth DJ, Baran N, Stuart ME, Ward RS. Emerging organic contaminants in groundwater: a review of sources, fate and occurrence. Environ. Pollut. 2012;163:287-303. https://doi.org/10.1016/j.envpol.2011.12.034
  79. Morales S, Canosa P, Rodriguez I, Rubi E, Cela R. Microwave assisted extraction followed by gas chromatography with tandem mass spectrometry for the determination of triclosan and two related chlorophenols in sludge and sediments. J. Chromatogr. A 2005;1082:128-135. https://doi.org/10.1016/j.chroma.2005.05.059
  80. Ying GG, Kookana RS. Triclosan in wastewaters and biosolids from Australian wastewater treatment plants. Environ. Int. 2007;33:199-205. https://doi.org/10.1016/j.envint.2006.09.008
  81. Lee HB, Peart TE. Organic contaminants in Canadian municipal sewage sludge. Part I. Toxic or endocrine-disrupting phenolic compounds. Water Qual. Res. J. Canada 2002;37:681-696.
  82. Chu SG, Metcalfe CD. Simultaneous determination of triclocarban and triclosan in municipal biosolids by liquid chromatography tandem mass spectrometry. J. Chromatogr. A 2007;1164:212-218. https://doi.org/10.1016/j.chroma.2007.07.024
  83. Wu C, Spongberg AL, Witter JD, Fang M, Czajkowski KP. Uptake of pharmaceutical and personal care products by soybean plants from soils applied with biosolids and irrigated with contaminated water. Environ. Sci. Technol. 2010;44:6157-6161. https://doi.org/10.1021/es1011115
  84. Calafat AM, Ye X, Wong LY, Reidy JA, Needham LL. Urinary concentrations of triclosan in the US population: 2003-2004. Environ. Health Perspect. 2008;116:303-307.
  85. Wolff MS, Teitelbaum SL, Windham G, et al. Pilot study of urinary biomarkers of phytoestrogens, phthalates, and phenols in girls. Environ. Health Perspect. 2007;115:116-121.
  86. Dirtu AC, Roosens L, Geens T, Gheorghe A, Neels H, Covaci A. Simultaneous determination of bisphenol A, triclosan, and tetrabromobisphenol A in human serum using solid-phase extraction and gas chromatography-electron capture negativeionization mass spectrometry. Anal. Bioanal. Chem. 2008;391: 1175-1181. https://doi.org/10.1007/s00216-007-1807-9
  87. Canosa P, Rodriguez I, Rubi E, Cela R. Determination of parabens and triclosan in indoor dust using matrix solid-phase dispersion and gas chromatography with tandem mass spectrometry. Anal. Chem. 2007;79:1675-1681. https://doi.org/10.1021/ac061896e
  88. Adolfsson-Erici M, Allmyr M. Consumer products containing antibacterial substances - a source of human and environmental exposure? In: Stockolms Stad Report. Stockolms Stad Stockolm, Sweden; 2007.
  89. Lindstrom A, Buerge IJ, Poiger T, Bergqvist PA, Muller MD, Buser HR. Occurrence and environmental behavior of the bactericide triclosan and its methyl derivative in surface waters and in wastewater. Environ. Sci. Technol. 2002;36:2322-2329. https://doi.org/10.1021/es0114254
  90. Balmer ME, Poiger T, Droz C, et al. Occurrence of methyl triclosan, a transformation product of the bactericide triclosan, in fish from various lakes in Switzerland. Environ. Sci. Technol. 2004;38:390-395. https://doi.org/10.1021/es030068p
  91. Farre M, Asperger D, Kantiani L, Gonzalez S, Petrovic M, Barcelo D. Assessment of the acute toxicity of triclosan and methyl triclosan in wastewater based on the bioluminescence inhibition of Vibrio fischeri. Anal. Bioanal. Chem. 2008;390:1999-2007. https://doi.org/10.1007/s00216-007-1779-9
  92. Latch DE, Packer JL, Stender BL, VanOverbeke J, Arnold WA, McNeill K. Aqueous photochemistry of triclosan: formation of 2,4-dichlorophenol, 2,8-dichlorodibenzo-p-dioxin, and oligomerization products. Environ. Toxicol. Pharmacol. 2005;24: 517-525.
  93. Mezcua M, Gomez MJ, Ferrer I, Aguera A, Hernando MD, Fernandez-Alba AR. Evidence of 2,7/2,8-dibenzodichloro-pdioxin as a photodegradation product of triclosan in water and wastewater samples. Anal. Chim. Acta 2004;524:241-247. https://doi.org/10.1016/j.aca.2004.05.050
  94. Lores M, Llompart M, Sanchez-Prado L, Garcia-Jares C, Cela R. Confirmation of the formation of dichlorodibenzo-p-dioxin in the photodegradation of triclosan by photo-SPME. Anal. Bioanal. Chem. 2005;381:1294-1298. https://doi.org/10.1007/s00216-004-3047-6
  95. Buth JM, Grandbois M, Vikesland PJ, McNeill K, Arnold WA. Aquatic photochemstry of chlorinated triclosan derivatives: potential source of polychlodibenzo-p-dioxins. Environ. Toxicol. Chem. 2009;28:2555-2563. https://doi.org/10.1897/08-490.1
  96. Sanchez-Prado L, Llompart M, Lores M, Fernandez-Alvarez M, Garcia-Jares C, Cela R. Further research on the photo-SPME of triclosan. Anal. Bioanal. Chem. 2006;384:1548-1557. https://doi.org/10.1007/s00216-006-0311-y
  97. Mason G, Farrell K, B Keys, Piskorska-Pliszczynska J, Safe L, Safe S. Polychlorinated dibenzo-p-dioxins: quantitative in vitro and in vivo structure-activity relationships. Toxicol. 1986;41:21-31. https://doi.org/10.1016/0300-483X(86)90101-0
  98. Canosa P, Morales S, Rodriguez I, Rubi E, Cela R, Gomez M. Aquatic degradation of triclosan and formation of toxic chlorophenols in presence of low concentrations of free chlorine. Anal. Bioanal. Chem. 2005;383:1119-1126. https://doi.org/10.1007/s00216-005-0116-4
  99. Fiss EM, Rule KL, Vikesland PJ. Formation of chloroform and other chlorinated byproducts by chlorination of triclosan-containing antibacterial products. Environ. Sci. Technol. 2007;41: 2387-2394. https://doi.org/10.1021/es062227l
  100. Rule KL, Ebbett VR, Vikesland PJ. Formation of chloroform and chlorinated organics by free-chlorine-mediated oxidation of triclosan. Environ. Sci. Technol. 2005;39:3176-3185. https://doi.org/10.1021/es048943+
  101. Greyshock AE, Vikesland PJ. Triclosan reactivity chloraminated waters. Environ. Sci. Technol. 2006;40:2615-2622. https://doi.org/10.1021/es051952d
  102. Hernandez-Leal L, Temmink H, Zeeman G, Buisman CJN. Removal of micropollutants from aerobically treated grey water via ozone and activated carbon. Water Res. 2011;45:2887-2896. https://doi.org/10.1016/j.watres.2011.03.009
  103. Westerhoff P, Yoon Y, Snyder S, Wert E. Fate of endocrine-disruptor, pharmaceutical, and personal care product chemicals during simulated drinking water treatment processes. Environ. Sci. Technol. 2005;39:6649-6663. https://doi.org/10.1021/es0484799
  104. Nghiem LD, Coleman PJ. NF/RO filtration of the hydrophobic ionogenic compound triclosan: transport mechanisms and the influence of membrane fouling. Sep. Purif. Technol. 2008;62:709-716. https://doi.org/10.1016/j.seppur.2008.03.027
  105. Sanchez-Prado L, Barro R, Garcia-Jares C, et al. Sonochemical degradation of triclosan in water and wastewater. Ultrason. Sonochem. 2008;15:689-694. https://doi.org/10.1016/j.ultsonch.2008.01.007
  106. Lundstrom E, Adolfsson-Erici M, Alsberg T, et al. Characterization of additional sewage treatment technologies: ecotoxicological effects and levels of selected pharmaceuticals, hormones and endocrine disruptors. Ecotoxicol. Environ. Saf. 2010;73:1612-1619. https://doi.org/10.1016/j.ecoenv.2010.05.012
  107. Yu JC, Kwong TY, Luo Q, Cai ZW. Photocatalytic oxidation of triclosan. Chemosphere 2006;65:390-399. https://doi.org/10.1016/j.chemosphere.2006.02.011
  108. Son HS, Zoh KD, Ko G. Kinetics and mechanism of photolysis and $TiO_2$ photocatalysis of triclosan. J. Hazard Mater. 2009;166:954-960. https://doi.org/10.1016/j.jhazmat.2008.11.107
  109. Son HS, Khim J, Zoh KD. Degradation of triclosan in the combined reaction of $Fe^{2+}$ and UV-C: comparison with the fenton and photolytic reactions. Environ. Prog. Sustain. 2010;29:415-420. https://doi.org/10.1002/ep.10422
  110. Maharana D, Niu J, Rao NN, Xu Z, Shi J. Electrochemical degradation of triclosan at a Ti/$SnO_2$-Sb/Ce-$PbO_2$ anode. CLEAN-Soil, Air, Water 2014.
  111. Thompson A, Griffin P, Stuetz R, Cartmell E. The fate and removal of triclosan during wastewater treatment. Water Environ. Res. 2005;77:63-67. https://doi.org/10.2175/106143005X41636
  112. Yu CP, Chu KH. Occurrence of pharmaceuticals and personal care products along the West Prong Little Pigeon River in east Tennessee, USA. Chemosphere 2009;75:1281-1286. https://doi.org/10.1016/j.chemosphere.2009.03.043
  113. Tastan BE, Donmez G. Biodegradation of pesticide triclosan by A. versicolor in simulated wastewater and semi-synthetic media. Pestic. Biochem. Physiol. 2015;118:33-37. https://doi.org/10.1016/j.pestbp.2014.11.002
  114. Lee DG, Cho KC, Chu KH. Identification of triclosan-degrading bacteria in a triclosan enrichment culture using stable isotope probing. Biodegradation 2014;25:55-65. https://doi.org/10.1007/s10532-013-9640-7
  115. Ying GG, Yu XY, Kookana RS. Biological degradation of triclocarban and triclosan in a soil under aerobic and anaerobic conditions and comparison with environmental fate modelling. Environ. Pollut. 2007;150:300-305. https://doi.org/10.1016/j.envpol.2007.02.013
  116. Chen X, Nielsen JL, Furgal K, Liu Y, Lolas IB, Bester K. Biodegradation of triclosan and formation of methyl-triclosan in activated sludge under aerobic conditions. Chemosphere 2011;84:452-456. https://doi.org/10.1016/j.chemosphere.2011.03.042

피인용 문헌

  1. Photodegradation of 17α-ethynylestradiol in nitrate aqueous solutions vol.21, pp.2, 2016, https://doi.org/10.4491/eer.2016.008
  2. Fluorescence Optosensing of Triclosan by Upconversion Nanoparticles with Potassium Permanganate vol.4, pp.5, 2015, https://doi.org/10.1021/acsomega.8b03680
  3. Mechanism of growth amelioration of triclosan-stressed tobacco (Nicotiana tabacum) by endogenous salicylic acid vol.282, pp.None, 2015, https://doi.org/10.1016/j.envpol.2021.117032
  4. Actinomycin X2, an Antimicrobial Depsipeptide from Marine-Derived Streptomyces cyaneofuscatus Applied as a Good Natural Dye for Silk Fabric vol.20, pp.1, 2015, https://doi.org/10.3390/md20010016