DOI QR코드

DOI QR Code

혼화재료를 고려한 압축 및 인장상태에서 콜드조인트 콘크리트의 투수성 평가

Permeability Evaluation in Cold Joint Concrete with Mineral Admixture under Compressive and Tensile Loading

  • 최세진 (원광대학교 건축공학과) ;
  • 김성준 (한국건설기술연구원 구조융합연구소) ;
  • 문진만 (한남대학교 건설시스템공학과) ;
  • 권성준 (한남대학교 건설시스템공학과)
  • 투고 : 2015.04.08
  • 심사 : 2015.06.09
  • 발행 : 2015.09.28

초록

본 연구에서는 하중조건과 혼화재료의 영향을 고려하여 콜드조인트를 가진 콘크리트의 투수성을 정량적으로 실험적으로 평가하였다. 물-결합재비 0.6과 40%의 고로슬래그 미분말 치환률을 가지는 콘크리트 시편에 콜드조인트 콘크리트를 유도하였으며, 압축영역에서는 최대응력의 0%, 30%, 60%, 인장영역에서는 최대응력의 60%로 하중수준을 고려하여 투수성을 평가하였다. OPC 콘크리트 투수계수는 Control에서 $2.41{\times}10^{-11}m/s$로 평가되었는데, 압축하중 30% 조건에서 $2.07{\times}10^{-11}m/s$로 감소하였으나 60% 조건에서는 $2.36{\times}10^{-11}m/s$로 증가하였다. 또한 GGBFS 콘크리트의 투수계수는 각각 $2.17{\times}10^{-11}m/s$, $1.65{\times}10^{-11}m/s$, $1.96{\times}10^{-11}m/s$로 같은 경향을 나타내었다. 인장영역에서는 OPC 배합의 투수계수는 Control에서 $2.37{\times}10^{-11}m/s$ 였으나 60% 조건에서 $2.67{\times}10^{-11}m/s$ 로 증가하였다. 또한 GGBFS 콘크리트에서는 각각 $2.17{\times}10^{-11}m/s$, $2.24{\times}10^{-11}m/s$로 평가되었다. 압축응력 조건에서 투수성은 하중의 증가에 따라 초기에 감소하다가 증가하였으며, 인장응력 재하시에서는 빠른 증가를 나타내었다. 이는 콘크리트내의 공극구조가 하중의 증가에 따라 압밀되고 이후 미세균열발생으로 인해 투수성이 증가하게 된다. 일반 콘크리트에 비해 고로슬래그 미분말, 하중조건, 콜드조인트는 투수성을 크게 변동시키므로 이를 고려한 투수성 평가가 필요한 것으로 확인되었다.

This paper presents a quantitative evaluation of water permeability in concrete with cold joint considering mineral admixture and loading conditions. Concrete samples with OPC (Ordinary Portland Cement) and GGBFS(Ground Granulated Blast Furnace Slag) are prepared considering 0.6 of W/C ratio and 40% of replacement. 30% and 60% loading levels for compression and 60% loading level for tension are induced to concrete samples. In compression conditions, the permeability in control case shows $2.41{\times}10^{-11}m/s$ in OPC concrete, and it changes to $2.07{\times}10^{-11}m/s$ (30% of peak) and $2.36{\times}10^{-11}m/s$ (60% of peak). The results in GGBFS concrete shows the same trend, which yields $2.17{\times}10^{-11}m/s$ (control), $1.65{\times}10^{-11}m/s$ (30% of peak), and $1.96{\times}10^{-11}m/s$ (60% of peak), respectively. In tensile conditions, the permeability increases from $2.37{\times}10^{-11}m/s$ (control) to $2.67{\times}10^{-11}m/s$ (60% of peak) while that in GGBFS concrete increases from $2.17{\times}10^{-11}m/s$ (control) to $2.24{\times}10^{-11}m/s$ (60% of peak). Permeability coefficients decreases in 30% of compressive level but increases in 60% level, while results in tensile level increases rapidly. This shows pore structure in concrete is condensed and with loading and permeability increases due to micro-cracking. Permeability evaluation considering the effects of loading conditions, cold joint, and GGBFS is verified to be important since water permeability greatly changes due to their effects.

키워드

참고문헌

  1. 이윤, 박기태, 권성준, "폴리프로필렌 섬유 보강 RHA 콘크리트의 공학적 특성", 한국콘텐츠학회논문지, Vol.15, No.3, pp.427-437, 2015. https://doi.org/10.5392/JKCA.2015.15.03.427
  2. 김윤용, 오광진, 박기태, 권성준, "공극구조 및 하중조건에 따른 콘크리트의 초음파 속도 모델링", 한국콘텐츠학회논문지, Vol.15, No.3, pp.415-426, 2015. https://doi.org/10.5392/JKCA.2015.15.03.415
  3. T. C. Powers, L. E. Copeland, J. C. Hayes, and H. M. Mann, "Permeability of portland cement paste", Journal of American Concrete Institute, Vol.51, No.11, pp.285-298, 1954.
  4. T. C. Powers, "Structure and physical properties of hardened portland cement paste", Journal of American Ceramic Society, Vol.41, No.1, pp.1-6, 1958.
  5. 장종철, 송하원, 변근주, "실리카퓸 혼입 콘크리트의 확산계수 및 투수계수의 미시학적 추정", 대한토목학회학술발표회 논문집, Vol.1, No.2, pp.531-536, 2002.
  6. 소형석, 소양섭, "포졸란재 함유 콘크리트의 투수 및 투기성과 염화물이온 투과성", 대한토목학회논문집, 제19권, 제11호, pp.118-124, 2003.
  7. 권성준, 송하원, 박찬규, 변근주 "공극구조를 고려한 탄산화된 콘크리트의 투수 특성에 대한 연구", 대한토목학회 논문집, 제25권, 제3A호, pp.741-750, 2005.
  8. 권성준, 송하원, 변근주, "복합열화에 노출된 균열부 콘크리트 내의 염화물 침투 해석 기법에 대한 연구", 한국콘크리트학회 논문집, 제19권, 제3호, pp.359-366, 2007.
  9. 박상순, 염해에 노출된 콘크리트에서의 초기 균열 및 염화물 이동평가, 연세대학교 대학원 토목환경공학과, 박사학위논문, 2001.
  10. 박명숙, 콘크리트 구조물의 콜드조인트의 중성화 제어에 관한 연구, 연세대학교 산업대학원 토목환경공학과, 석사학위논문, 2001.
  11. K. Wang, D. Jansen, S. P. Shah, and A. Karr, "Permeability study of cracked concrete," Cement and Concrete Research, Vol.27, No.3, pp.381-393, 1997. https://doi.org/10.1016/S0008-8846(97)00031-8
  12. C. M. Aldea, M. Ghandehari, S. P. Shah, and A. Karr, "Estimation of water flow through cracked concrete under load", ACI Materials Journal, Vol.97, No.5, pp.567-575, 2000.
  13. S. S. Park, S. J. Kwon, and S. H. Jung, "Analysis technique for chloride penetration in cracked concrete using equivalent diffusion and permeation", Construction and Building Materials, Vol.29, No.2, pp.183-192, 2012. https://doi.org/10.1016/j.conbuildmat.2011.09.019
  14. S. S. Park, S. J. Kwon, S. H. Jung, and S. W. Lee, "Modeling of water permeability in early aged concrete with cracks based on micro pore structure", Construction and Building Materials, Vol.27, No.1, pp.597-604, 2012. https://doi.org/10.1016/j.conbuildmat.2011.07.002
  15. 현태양, 수압과 균열폭 변화에 따른 콘크리트 투 수계수의 실험적 연구, 한국과학기술원 건설환경 공학과, 석사학위논문. 2007.
  16. JSCE, Concrete Cold Joint Problems and Countermeasures, Concrete Library Japan 387 Society of Civil Engineering, Vol.103, 2000.
  17. ACI 224.3R-95, Joints in Concrete Construction, American Concrete Institute, USA, 389 Reapproved, 2001.
  18. A. Kermani, "Permeability of stressed concrete", Building Research and Information, Vol.19, No.6, pp.360-366, 1991. https://doi.org/10.1080/09613219108727156
  19. A. Biparva, Permeability and durability of high volume flyash concrete under an applied compressive stress, M.A.Sc. Thesis, University of British Colombia, 2005.
  20. M. Hoseini, V. Bindiganabile, and N. Banthia, "The effect of mechanical stress on permeability of concrete: A review", Cement and Concrete Composites, Vol.31, No.4, pp.213-220, 2009, https://doi.org/10.1016/j.cemconcomp.2009.02.003
  21. N. Banthia, A. Biparva, and S. Mindess, "Permeability of concrete under stress", Cement and Concrete Research, Vol.35, No.9, pp.1651-1655, 2005. https://doi.org/10.1016/j.cemconres.2004.10.044
  22. 윤인석, "탄산화 및 비탄산화된 콘크리트의 투수 계수의 해석 기법 개발", 한국콘크리트학회 논문집, Vol.21, No.3, pp.255-264, 2009.
  23. D. Ludirdja, R. L. Berger, and F. Young, "Simple method for measuring water permeability of concrete", ACI Materials Journal, Vol.86, No.5, pp.433-439, 1990.
  24. H. W. Song and S. J. Kwon, "Permeability characteristics of carbonated concrete considering capillary pore structure", Cement and Concrete Research, Vol.37, No.6, pp.909-915, 2007. https://doi.org/10.1016/j.cemconres.2007.03.011