DOI QR코드

DOI QR Code

Numerical Thermal Analysis of IGBT Module Package for Electronic Locomotive Power-Control Unit

전동차 추진제어용 IGBT 모듈 패키지의 방열 수치해석

  • Suh, Il Woong (Graduate School of NID Fusion Technology, Seoul National Univ. of Science and Technology) ;
  • Lee, Young-ho (Woojin Industrial System Co., Ltd.) ;
  • Kim, Young-hoon (SP Semiconductor & Communication Co., Ltd.) ;
  • Choa, Sung-Hoon (Graduate School of NID Fusion Technology, Seoul National Univ. of Science and Technology)
  • 서일웅 (서울과학기술대학교 NID융합기술대학원) ;
  • 이영호 (우진산전(주)) ;
  • 김영훈 (에스피반도체 통신(주)) ;
  • 좌성훈 (서울과학기술대학교 NID융합기술대학원)
  • Received : 2015.05.26
  • Accepted : 2015.07.04
  • Published : 2015.10.01

Abstract

Insulated-gate bipolar transistors (IGBTs) are the predominantly used power semiconductors for high-current applications, and are used in trains, airplanes, electrical, and hybrid vehicles. IGBT power modules generate a considerable amount of heat from the dissipation of electric power. This heat generation causes several reliability problems and deteriorates the performances of the IGBT devices. Therefore, thermal management is critical for IGBT modules. In particular, realizing a proper thermal design for which the device temperature does not exceed a specified limit has been a key factor in developing IGBT modules. In this study, we investigate the thermal behavior of the 1200 A, 3.3 kV IGBT module package using finite-element numerical simulation. In order to minimize the temperature of IGBT devices, we analyze the effects of various packaging materials and different thickness values on the thermal characteristics of IGBT modules, and we also perform a design-of-experiment (DOE) optimization

Insulated gate bipolar transistor (IGBT) 소자는 전동차, 항공기 및 전기 자동차에 가장 많이 사용되는 고전압, 고전력용 전력 반도체이다. 그러나 IGBT 전력소자는 동작 시 발열 온도가 매우 높고, 이로 인해, IGBT 소자의 신뢰성 및 성능에 큰 영향을 미치고 있다. 따라서 발열 문제를 해결하기 위한 IGBT 모듈 패키지의 방열 설계는 매우 핵심적인 기술이며, 특히, 소자가 동작 한계 온도에 올라가지 않도록 방열 설계를 적절히 수행하여야 한다. 본 논문에서는 전동차에 사용되는 1200 A, 3.3 kV 급 IGBT 모듈 패키지의 열 특성에 대해 수치해석을 이용하여 분석하였다. IGBT 모듈 패키지에 사용되는 다양한 재료 및 소재의 두께에 대한 영향을 분석하였으며, 실험계획법을 이용한 최적화 설계를 수행하였다. 이를 통하여 열 저항을 최소화하기 위한 최적의 방열 설계 가이드 라인을 제시하고자 하였다.

Keywords

References

  1. Wang, Y., Wu, Y., Jones, S., Dai, X. and Liu, G., 2014, "Challenges and Trends of High Power IGBT Module Packaging," Transportation Electrification Asia-Pacific (ITEC Asia-Pacific), pp. 1-7.
  2. Jung, C. H., Chung, Y. S. and Lee, H. W., 2009, "Investigation on Thermal Characteristics of Heat Sinks for Power Module Using STM," J. Mechanicl Science and Technology, Vol. 23, pp. 686-697 https://doi.org/10.1007/s12206-008-1217-8
  3. Kim, K. S., Choi, D. H. and Jung, S. B., 2014, "Overview on Thermal Management Technology for High Power Device Packaging," J. Microelectron. Packag. Soc., 21(2), pp. 13-21. https://doi.org/10.6117/kmeps.2014.21.2.013
  4. Lu, H., Bailey, C. and Yin, C., 2009, "Design for Reliability of Power Electronics Modules," Microelectron. Reliab., Vol. 49, No. 9-11, pp. 1250-1255. https://doi.org/10.1016/j.microrel.2009.07.055
  5. Yoon, J. W., Bang, J. H., Ko, Y. H., Yoo, S. H., Kim, J. K. and Lee, C. W., 2014 "Power Module Packaging Technology with Extended Reliability for Electric Vehicle Application," J. Microelectron. Packag. Soc., 21(4), pp. 1-13. https://doi.org/10.6117/kmeps.2014.21.4.001
  6. Schilling, O., Schafer, M., Mainka, K., Thoben, M. and Sauerland, F., 2012, "Power Cycling Testing and FE Modelling Focused on Al Wire Bond Fatigue in High Power IGBT Modules," Microelectron. Reliab., Vol. 52, pp. 2347-2352. https://doi.org/10.1016/j.microrel.2012.06.095
  7. Marcault, E., Breil, M., Bourennane, A., Tounsi, P. and Dupuy, P., 2011, "Impact of the Solder Joint Ageing on IGBT I-V Characteristics Using 2D Physical Simulations," Thermal, Mechanical and Multi-Physics Simulation and Experiments in Microelectronics and Microsystems, pp. 1-4.
  8. Liao, L. L., Hung, T. Y., Liu, C. K., Li, W., Dai, M. J. and Chiang, K. N., 2014, "Electro-Thermal Finite Element Analysis and Verification of Power Module with Aluminum Wire," Microelectronic Engineering, Vol. 120, pp. 114-120. https://doi.org/10.1016/j.mee.2013.12.033
  9. Hung, T. Y., Chiang, S. Y., Chou, C. Y., Chiu, C. C. and Chiang, K. N., 2010, "Thermal Design and Transient Analysis of Insulated Gate Bipolar Transistors of Power Module," Thermal and Thermomechanical Phenomena in Electronic Systems, 12th IEEE Intersociety Conference, pp. 1-5.
  10. Ishizaki, T., Satoh, T., Kuno, A., Tane, A., Yanase, M., Osawa, F. and Yamada, Y., 2013, "Thermal Characterizations of Cu Nanoparticle Joints for Power Semiconductor Devices," Microelectron. Reliab., Vol. 53, pp. 1543-1547. https://doi.org/10.1016/j.microrel.2013.07.042
  11. Hocine, R., Stambouli, A. B. and Saidane, A., 2003, "A Three-Dimensional TLM Simulation Method for Thermal Effect in High Power Insulated Gate Bipolar Transistors," Microelectronic Engineering, Vol. 65, pp. 293-306. https://doi.org/10.1016/S0167-9317(02)00903-6
  12. Trigkidis, G., Bousbaine, A. and Thorn, R., 2006, "Thermal Modelling of IGBT Devices" Proceedings of the 41st International, Universities Power Engineering Conference (UPEC), Vol. 2, pp. 584-588.
  13. Wang, Z., Qiao, W., Tian, B. and Qu, L., 2014, "An Effective Heat Propagation Path-Based Online Adaptive Thermal Model for IGBT Modules," Application Power Electronics Conference and Exposition (APEC), pp. 513-518.
  14. Godbold, C. V., Sankaran, V. A. and Hudgins, J. L., 1995, "Thermal Analysis of High Power Modules," Applied Power Electronics Conference and Exposition (APEC), Vol. 1, pp. 140-146
  15. Nishimura, Y., Morozumi, A., Mochizuki, E. and Takahashi, Y., 2006, "Investigations of all Lead Free IGBT Module Structure with Low Thermal Resistance and High Reliability," Power Semiconductor Devices and IC's (ISPSD), pp. 1-4.
  16. Wang, Z., Qiao, W., Tian, B. and Qu, L., 2014, "An Effective Heat Propagation Path-Based Online Adaptive Thermal Model for IGBT Modules," Applied Power Electronics Conference and Exposition (APEC), pp. 513-518.
  17. Ishizaki, T., Satoh, T., Kuno, A., Tane, A., Yanase, M., Osawa, F. and Yamada, Y., 2013, "Thermal Characterizations of Cu Nanoparticle Joints for Power Semiconductor Devices," Microelectron Reliab., Vol. 53, pp. 1543-1547. https://doi.org/10.1016/j.microrel.2013.07.042
  18. Kwak, Y. H., Lee, Y.K., Cho, J. H., Hong, C. S., Kim, K. S. and Suh, B. S., 2013, " Numerical Study on Thermal Characteristics of High Power Semiconductor Modules," Transactions of Korean Institute of Power Electronics, Vol. 7, pp. 87-90.
  19. Xu, Y. and Hopkins, D. C., 2014, "Misconception of Thermal Spreading Angle and Misapplication to IGBT Power Modules," Applied Power Electronics Conference and Exposition (APEC), pp. 545-551.