DOI QR코드

DOI QR Code

Effects of boundary layer and liquid viscosity and compressible air on sloshing characteristics

  • Zou, Chang-Fang (State Key Laboratory of Ocean Engineering, Shanghai Jiao Tong University) ;
  • Wang, De-Yu (State Key Laboratory of Ocean Engineering, Shanghai Jiao Tong University) ;
  • Cai, Zhong-Hua (State Key Laboratory of Ocean Engineering, Shanghai Jiao Tong University)
  • Received : 2015.01.14
  • Accepted : 2015.04.24
  • Published : 2015.07.31

Abstract

In this paper, numerical investigations for tank sloshing, based on commercial CFD package FLUENT, are performed to study effects of boundary layer grid, liquid viscosity and compressible air on sloshing pressure, wave height and rising time of impact pressure. Also, sloshing experiments for liquids of different viscosity are carried out to validate the numerical results. Through comparison of numerical and experimental results, a computational model including boundary layer grid can predict the sloshing pressure more accurately. Energy dissipation due to viscous friction leads to reduction of sloshing pressure and wave elevation. Sloshing pressure is also reduced because of cushion effect of compressible air. Due to high viscosity damping effect and compressible air effect, the rising time of impact pressure becomes longer. It is also found that liquid viscosity and compressible air influence distribution of dynamic pressure along the vertical tank wall.

Keywords

References

  1. Akyildiz, H. and Unal, E., 2005. Experimental investigation of pressure distribution on a rectangular tank due to the liquid sloshing. Ocean Engineering, 32(11-12), pp.1503-1516. https://doi.org/10.1016/j.oceaneng.2004.11.006
  2. Akyildiz, H. and Unal, N.E., 2006. Sloshing in a three-dimensional rectangular tank: Numerical simulation and experimental validation. Ocean Engineering, 33(16), pp.2135-2149. https://doi.org/10.1016/j.oceaneng.2005.11.001
  3. Akyildiz, H., 2012. A numerical study of the effects of the vertical baffle on liquid sloshing in two-dimensional rectangular tank. Journal of Sound and Vibration, 331(1), pp.41-52. https://doi.org/10.1016/j.jsv.2011.08.002
  4. Celebi, M.S. and Akyildiz, H., 2002. Nonlinear modeling of liquid sloshing in a moving rectangular tank. Ocean Engineering, 29(12), pp.1527-1553. https://doi.org/10.1016/S0029-8018(01)00085-3
  5. Chen, Z., Zong, Z., Li, H.T. and Li, J., 2013. An investigation into the pressure on solid walls in 2D sloshing using SPH method, Ocean Engineering, 59, pp.129-141. https://doi.org/10.1016/j.oceaneng.2012.12.013
  6. Curadelli, O., 2013. Equivalent linear stochastic seismic analysis of cylindrical base-isolated liquid storage tanks. Journal of Constructional Steel Research, 83, pp.166-176. https://doi.org/10.1016/j.jcsr.2012.12.022
  7. Damatty, A.A.E. and Sweedan, A.M.I., 2006. Equivalent mechanical analog for dynamic analysis of pure conical tanks. Thin-Walled Structures, 44(4), pp.429-440. https://doi.org/10.1016/j.tws.2006.03.016
  8. Faltinsen, O.M. and Timokha, A.N., 2002. Asymptotic modal approximation of nonlinear resonant sloshing in a rectangular tank with small fluid depth. Journal of Fluid Mechanics, 470, pp.319-357.
  9. Faltinsen, O.M. and Timokha, A.N., 2009. Sloshing. Cambridge: Cambridge University Press.
  10. Faltinsen, O.M., Rognebakke, O.F. and Timokha, A.N., 2003. Resonant three-dimensional nonlinear sloshing in a square-base basin. Journal of Fluid Mechanics, 487, pp.1-42. https://doi.org/10.1017/S0022112003004816
  11. Faltinsen, O.M., Rognebakke, O.F. and Timokha, A.N., 2005a. Resonant three-dimensional nonlinear sloshing in a square base basin. Part 2. Effect of higher modes. Journal of Fluid Mechanics, 523, pp.199-218. https://doi.org/10.1017/S002211200400196X
  12. Faltinsen, O.M., Rognebakke, O.F. and Timokha, A.N., 2005b. Classification of simulation and validation of three-dimensional nonlinear sloshing in a square-base tank with finite depth. Journal of Fluids and structures, 20(1), pp. 81-103. https://doi.org/10.1016/j.jfluidstructs.2004.08.001
  13. Fluent Manual, 2006. FLUENT 6.3 User's Guide. Fluent Inc.
  14. Frandsen, J.B., 2004. Sloshing motions in excited tanks. Journal of Computational Physics, 196(1), pp.53-87. https://doi.org/10.1016/j.jcp.2003.10.031
  15. Guilcher, P.M., Couty, N., Brosset, L. and Touze, D.L., 2013. Simulations of breaking wave impacts on a rigid wall at two different scales with a two phase fluid compressible SPH model. International Journal of Offshore and Polar Engineering, 23(4), pp.241-253.
  16. He, H., Kuo, J.F., Rinehart, A.J. and Yung, T.W., 2009. Influence of raised invar edges on sloshing impact pressures. International Journal of Offshore and Polar Engineering, 19(4), pp.280-285.
  17. Ibrahim, R.A., 2005. Liquid sloshing dynamics: Theory and Applications. Cambridge University Press.
  18. Kim, M.H., Lee, S.M., Lee, J.M., Noh, B.J. and Kim, W.S., 2010. Fatigue strength assessment of MARK-III type LNG cargo containment system. Ocean Engineering, 37(14-15), pp.1243-1252. https://doi.org/10.1016/j.oceaneng.2010.05.004
  19. Kim, S.Y., Kim, K.H. and Kim, Y.H., 2012. Comparative study on model-scale sloshing tests. Journal of Marine Science and Technology, 17(1), pp.47-58. https://doi.org/10.1007/s00773-011-0144-z
  20. Kim, Y., 2013a. Rapid response calculation of LNG cargo containment system under sloshing load using wavelet transformation. Int. J. Naval Archit. Ocean Eng., 5(2), pp.227-245. https://doi.org/10.3744/JNAOE.2013.5.2.227
  21. Kim, Y., Kim, S.Y., Ahn, Y., Kim, K.H., Jeon, S.E., Suh, Y.S., Park, J.J. and Hwangbo, S.M., 2013b. Model-scale sloshing tests for an anti-sloshing floating blanket system. International Journal of Offshore and Polar Engineering, 23(4), pp.254-262.
  22. Lee, C.J.K., Noguchi, H. and Koshizuka, S., 2007b. Fluid-shell structure interaction analysis by coupled particle and finite element method. Computers and structures, 85(11-14), pp.688-697. https://doi.org/10.1016/j.compstruc.2007.01.019
  23. Lee, D.H., Kim, M.H., Kwon, S.H., Kim, J.W. and Lee, Y.B., 2007a. A parametric sensitivity study on LNG tank sloshing loads by numerical simulations. Ocean Engineering, 34(1), pp.3-9. https://doi.org/10.1016/j.oceaneng.2006.03.014
  24. Lee, S.J., Kim, M.H., Lee, D.H., Kim, J.W. and Kim, Y.H., 2007c. The effects of LNG-tank sloshing on the global motions of LNG carriers. Ocean Engineering, 34(1), pp.10-20. https://doi.org/10.1016/j.oceaneng.2006.02.007
  25. Liu, D.M. and Lin, P.Z., 2008. A numerical study of three-dimensional liquid sloshing in tanks. Journal of Computational Physics, 227(8), pp.3921-3939. https://doi.org/10.1016/j.jcp.2007.12.006
  26. Livaoglu, R., 2008. Investigation of seismic behavior of fluid-rectangular tank-soil/foundation systems in frequency domain. Soil Dynamics and Earthquake Engineering, 28(2), pp.132-146. https://doi.org/10.1016/j.soildyn.2007.05.005
  27. LOhner, R., Yang, C. and Onate, E., 2006. On the simulation of flows with violent free surface motion. Computer Methods in Applied Mechanics and Engineering, 195(41-43), pp.5597-5620. https://doi.org/10.1016/j.cma.2005.11.010
  28. Marsh, A., Prakash, M., Semercigil, E. and Turan, O.F., 2011. A study of sloshing absorber geometry for structural control with SPH. Journal of Fluids and Structures, 27(8), pp.1165-1181. https://doi.org/10.1016/j.jfluidstructs.2011.02.010
  29. Pan, X.J., Zhang, H.X. and Sun X.Y., 2012. Numerical simulation of sloshing with large deforming free surface by MPS-LES method. China Ocean Engineering, 26(4), pp.653-668. https://doi.org/10.1007/s13344-012-0049-6
  30. Rognebakke, O.F. and Faltinsen, O.M., 2003. Coupling of sloshing and ship motions. Journal of Ship Research, 47(3), pp.208-221.
  31. Shi, G.J. and Wang, D.Y., 2012. Residual ultimate strength of cracked box girders under torsional loading. Ocean Engineering, 43, pp.102-112. https://doi.org/10.1016/j.oceaneng.2011.12.028
  32. Thiagarajan, K.P., Rakshit, D. and Repalle, N., 2011. The air-water sloshing problem: Fundamental analysis and parametric studies on excitation and fill levels. Ocean Engineering, 38(2-3), pp.498-508. https://doi.org/10.1016/j.oceaneng.2010.11.019
  33. Zhang, A.M., Cao, X.Y., Ming, F.R. and Zhang, Z.F., 2013. Investigation on a damaged ship model sinking into water based on three dimensional SPH method. Applied Ocean Research, 42, pp.24-31. https://doi.org/10.1016/j.apor.2013.03.006

Cited by

  1. The pressure distribution on the rectangular and trapezoidal storage tanks' perimeters due to liquid sloshing phenomenon vol.8, pp.2, 2015, https://doi.org/10.1016/j.ijnaoe.2015.12.001