DOI QR코드

DOI QR Code

Characteristics of Antenna Factor for a Calculable Dipole Antenna above Ground Plane in 1~3 GHz Frequency Band

1~3 GHz 대역용 계산가능 다이폴안테나의 접지판 위 안테나 인자 특성

  • Received : 2015.06.30
  • Accepted : 2015.08.04
  • Published : 2015.08.20

Abstract

This paper presents the antenna factor characteristics of a calculable dipole antenna with a hybrid balun, installed above ground plane vertically and horizontally, using Method of Moments (MoM). An expression for the antenna factor is formulated using the concept of power mismatch loss. The input impedance and effective length of the antenna, which are in the formula of the antenna factor, are calculated using the MoM. The results show that the antenna factors above a ground plane are agreed with the free space antenna factors within ± 0.14 dB. The horizontal antenna factors are varied more by 0.2 dB than the vertical antenna factors.

본 논문은 하이브리드 발룬을 갖는 계산가능 다이폴안테나가 접지판 위에 수평 및 수직으로 놓여 있을 경우의 안테나 인자 특성을 모멘트법으로 검토하고 있다. 안테나 인자의 표현식은 전력부정합손실의 개념을 적용하여 도출한 식을 사용하였으며, 안테나 인자의 계산에서 나타나는 안테나의 입력 임피던스 및 유효길이는 모멘트법을 적용하여 계산하고 있다. 그 결과, 접지판 위에서의 안테나 인자 특성은 안테나의 편파상태에 따라 달라지며 자유공간 안테나 인자와는 최대 ± 0.14 dB 의 차이가 발생함을 알 수 있었다. 또한, 수평편파인 경우의 안테나 인자 변동폭이 수직편파인 경우보다 0.2 dB 정도 더 크다는 것도 확인할 수 있었다.

Keywords

References

  1. ANSI C63.5:1998, "American National Standard for Electromagnetic Compatibility—Radiated Eission Measurements in Electromagnetic Interference (EMI) Control—Calibration of Antennas (9 kHz to 40 GHz)," (The methods of antenna calibration are unchanged from C63.5:1988), ANSI, Washington, DC.
  2. CISPR 16-4 (2002-05), "Specification for Radio Disturbance and Immunity Measuring Apparatus and Methods, Part 4: Uncertainty in EMC Measurements," IEC, Geneva.
  3. M.J. Salter and M.J. Alexander, “EMC antenna calibration and the design of an open-field site”, Jnl. of Phys. E, Meas. Sci. Technol., pp. 510-519, Feb. 1991. https://doi.org/10.1088/0957-0233/2/6/004
  4. M.J. Alexander and M.J. Salter, “Low measurement uncertainties in the frequency range 30 MHz to 1 GHz using a calculable standard dipole antenna and national reference ground plane”, IEE Proc. Sci. Meas. Technol. vol. 143, no. 4, pp. 221-228, July. 1996. https://doi.org/10.1049/ip-smt:19960606
  5. M.J. Alexander, M. Salter, M. Loader, B. Knight, D., "Broadband calculable dipole reference antennas", IEEE Transactions on Electromagnetic Compatibility, vol. 44, no. 1, pp. 45-58, Feb. 2002. https://doi.org/10.1109/15.990710
  6. B.G. Loader and M.J. Alexander, “A Calculable Dipole Antenna to Cover the Frequency Range 850 MHz to 2.2 GHz”, 2004 Conference on Precision Electromagnetic Measurements Digest, pp. 194-195, June 2004.
  7. K.-C. Kim, S.-M. Kim, J.-Y. Kwon, T.-W. Kang, J.-H. Kim, "The design of calculable standard dipole antennas in the frequency range of 1 - 3 GHz", Proceedings of ISAP 2011, SE10-1006, Oct. 2011.
  8. K.-C. Kim, S.-M. Kim, K.-C. Kim, J.-Y. Kwon, T.-W. Kang, J.-H. Kim, “A Comparison of Antenna Characteristics for a Calculable Dipole Antenna by MoM and EMF Method”, KJKIEES, vol.23, no. 3, pp. 275-282, Mar. 2012.
  9. M. Sakasai, A. Suzuki, T. Sugiyama, K. Koike, H. Hasuzawa, and K. Fujii, "Trial model of calculable dipole antenna for the frequency range from 1 to 6 GHz", National convention records of the IEICE, Communications (1), B-4-12, Mar. 2006.
  10. W.-S. Jo, “Study on the evaluation techniques of Antenna calibration open area test site”, KEIT, Nov. 2006.
  11. A. Kazemipour and X. Begaud, “Calculable Dipole Antenna for EMC Measurements with Low-Loss Wide- Band Balun from 30 MHz to 2 GHz ,” Electromagnetics, Vol. 25, Issue 3, 2005. https://doi.org/10.1080/02726340590915584
  12. T. Morioka, “Uncertainty of free-space dipole antenna factor from 1 GHz to 2 GHz,” IEEE Trans. Instrum. Meas., vol. IM-58, no. 4, pp. 1135–1140, April 2009. https://doi.org/10.1109/TIM.2008.2008460
  13. W.S. Bennett, “Properly applied antenna factors,” IEEE Trans. Electromag. Compat., vol. EMC-28, no.1, pp.2-6, Feb. 1986. https://doi.org/10.1109/TEMC.1986.4307232
  14. R.F. Harrington, “Field computation by Moment Methods, IEEE Press, New York, 1993.
  15. Picosecond Pulse Labs, Inc., www.picosecond.com.